DOI QR코드

DOI QR Code

Load-Displacement Relationship of Passive Vibration Units Composed with a Spring and Vibration-Proof Rubbers

스프링과 방진고무가 융합된 제진장치의 하중-변위 관계

  • 문주현 (경기대학교 스마트시티공학부 건축공학전공) ;
  • 임채림 (경기대학교 일반대학원 건축공학과) ;
  • 왕혜린 (경기대학교 일반대학원 건축공학과) ;
  • 양근혁 (경기대학교 스마트시티공학부 건축공학전공)
  • Received : 2021.11.02
  • Accepted : 2021.11.23
  • Published : 2021.12.31

Abstract

The objective of this study is to establish the fundamental design data for axial load-displacement relationship under axial monotonic or cyclic responses of seismic damping·isolation (SDI) units developed for ceiling structures. The main parameters include the installation of a spring, the number of rubber layer, prestress stress of bolts for connector between the spring and rubbers, and loading type. Test results showed that SDI units with a spring in the core and higher prestress stress of bolts tended to be higher stiffness at the ascending branch and more ductile behavior at the descending branch. This trends more notable for the specimens under monotonic load rather than cyclic loads. Consequently, the energy dissipation of SDI unit can be optimally designed with the following conditions: installation of a spring within 3-layer rubbers and prestress applied to the bolts at 10% of their yielding strength . When compared with the experimental tension capacity of the developed SDI units, the predictions by JIS B 2704-1 and KDS 31 00 are conservative under monotonic loading but higher by approximately 10% under cyclic loading.

이 연구의 목적은 천장구조재의 내진성능향상을 위해 개발된 제진장치(seismic damping·isolation unit, 이하 SDI 유닛)의 압축 및 인장하중상태의 하중-변위 관계를 평가하고 축하중 설계를 위한 기초자료를 구축하는데에 있다. 주요변수는 스프링의 유무, 방진고무의 적층수와 스프링과 방진고무의 결합을 위해 설치된 볼트의 프리스트레스력의 크기 그리고 재하방법이다. 실험결과 볼트의 프리스트레스력의 크기가 클수록, 반복하중 보다는 단조하중에서, 그리고 스프링이 있는 SDI 유닛은 하중-변위관계에서 탄성한계점까지의 강성증가 뿐만 아니라 최대 하중 이후의 연성거동에 유리하였다. 결과적으로 에너지 소산능력은 스프링이 있으면서, 3층의 방진고무 및 볼트 항복강도의 10%의 프리스트레스력을 갖는 SDI 유닛에서 가장 높았다. 개발된 SDI 유닛의 인장내력에 대해 JIS B 2704-1(2018) 및 KDS 31 00(2019)의 기준은 단조상태에서는 안전측에서 평가된 반면, 반복하중상태에서 약 10% 높게 평가되었다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 국토교통기술촉진연구사업의 연구비 지원으로 수행되었으며(과제번호 : 21CTAP-C164373-01), 2021학년도 경기대학교 대학원 연구원장학생 장학금지원에 의하여 수행된 연구임.

References

  1. AASHTO LRFD (2004), LRFD Bridge Design Specifications, 9th Edition, American Association of State Highway and Transportation Officials, Washington, D.C., USA.
  2. Ahn, T. S., Kim, Y. J., Park, J. H., Kim, H. G., Jang, D. H., and Oh, S. H. (2012), Experimental Study on a Cantilever Type Metallic Damper for Seismic Retrofit of Building Structures, Journal of Korean Society of Steel Construction, 24(2), 149-161. https://doi.org/10.7781/KJOSS.2012.24.2.149
  3. ASCE (2017), Seismic Evaluation and Retrofit of Existing Buildings, ASCE/SEI 41-17, American Society of Civil Engineers, Virginia, USA.
  4. BSI (2003), Eurocode 8: Design of Structures for Earthquake Resistance (EN 1998-1:2003), BSI, London, UK.
  5. Fares, Y., Chaussumier, M., Daidie, A., and Guillot, J. (2006), Determining the Life Cycle of Bolts Using a Local Approach and the Dang Van Criterion, Fatigue and Fracture of Engineering Materials and Structures, 29(8), 588-596. https://doi.org/10.1111/j.1460-2695.2006.01029.x
  6. Gilani, A. S. J., Reinhorn, A. M., Glasgow, B., Lavan, O., and Miyamoto, H. K. (2010), Earthquake Simulator Testing and Seismic Evaluation of Suspended Ceilings, Journal of Architectural Engineering, ASCE, 16(2), 63-73. https://doi.org/10.1061/(ASCE)1076-0431(2010)16:2(63)
  7. JIS B 2704-1 (2018), Coil Springs-Part 1: Basic Calculation Methods. Japanese Standards Association, Tokyo, Japan.
  8. Jun, S. C., Lee, C. H., and Bae, S. J. (2021), Full-Scale Shaking Table Test and Analysis of Seismic Ceiling Systems, Journal of Korean Society of Steel Construction, 33(2), 63-74. https://doi.org/10.7781/kjoss.2021.33.2.063
  9. KDS 41 31 00 (2019), Korean Building Code for Steel Structures, Korean Design Standard, Kyonggi-do, Korea.
  10. Khiavi, M. P., Ghorbani, M. A., and Rahmat, A. G. (2020), Seismic Optimization of Concrete Gravity Dams Using a Rubber Damper, International Journal of Acoustics and Vibration, 25(3), 425-435. https://doi.org/10.20855/ijav.2020.25.31674
  11. Kim, H. Y., Choi, Y. S., Sim, J. I., and Cho, C. G. (2018), Full-Scale Shaking Table Test and Analysis of Seismic Ceiling Systems, Journal of Korean Association for Spatial Structures, 18(1), 135-143. https://doi.org/10.9712/KASS.2018.18.1.135
  12. Kim, S. W., and Kim, K. H. (2020), Evaluation of Structural Behavior of Hysteretic Steel Dampers under Cyclic Loading, Applied Sciences, 10(22), 1-11.
  13. KS M 6518 (2021), Physical Test Methods for Vulcanized Rubber, Korea Agency for Technology and Standards, Seoul, Korea.
  14. Kulak, G. L., Fisher, J. W., and Struik, J. H. A. (2001), Guide to Design Criteria for Bolted and Riveted Joints, 2nd Edition, American Institute of Steel Construction, New Jersey, USA.
  15. Kurita, K., Aoki, S., Nakanishi, Y., Tominaga, K., and Kanazawa, M. (2011), Fundamental Characteristics of Reduction System for Seismic Response Using Friction Force, Journal of Civil Engineering and Architecture, 5(11), 1042-1047.
  16. Lee, J. S. (2021), Seismic Design and Performance Evaluation of In-direct Suspended Ceiling System with Steel Panels using Shaking Table Test, Ph.D. dissertation, Ajou University, Department of Architecture Engineering.
  17. Lee, J. S., In, S. W., Jung, D. I., Lee, D. Y., Lee, S. H., and Cho, B. H. (2019), Seismic Performance Evaluation of Non-seismic T-bar type Steel-Panel Suspended Ceiling using Shaking Table Test, Journal of Architectural Institute Korea Structure and Construction, 35(10), 171-180.
  18. Lijuan, L. (2010), A Study on Dissipation of Cumulative Hysteretic Energy in Reinforced Concrete Frame Structures, Advanced Materials Research, 163(167), 4301-4308.
  19. MacArthur, L. S. (2014), A Computational Approach for Evaluating Helical Compression Springs, International Journal of Research in Engineering and Technology, 3(12), 224-229. https://doi.org/10.15623/ijret.2014.0312029
  20. MOE (2019), Seismic Performance Evaluation and Retrofit Manual for School Facilities, Ministry of Education, Sejong-si, Korea.
  21. Wei, B., Zhuo, Y., Li, C., and Yang, G. (2019), Parameter Optimization of a Vertical Spring-Viscous Damper-Coulomb Friction System, Shock and Vibration, 2019, 1-19.
  22. Wu, Z. Y., Meng, N., Yuan, X., and Xiang, J. R. (2020), Anti-Seismic Suspended Ceiling with Stone Curtain Wall and Mounting Method Thereof. China Patent No. CN112324040A.
  23. Yamasato, K., Morohoshi, M., and Harayama, H. (2019), Aseismatic Ceiling Structure. Japan Patent No. JP2020165110A.