DOI QR코드

DOI QR Code

Control of Bending Behavior of Simple Beams Using CTMD

CTMD의 질량비에 따른 단순보의 휨거동 제어효과

  • 허광희 (건양대학교, 해외건설플랜트학과) ;
  • 서상구 (충남도립대학교, 건설정보학과) ;
  • 김충길 (건양대학교, 해외건설플랜트학과) ;
  • 전승곤 (충남도립대학교, 건설정보학과) ;
  • 김민기 (건양대학교, 재난안전공학과)
  • Received : 2020.12.05
  • Accepted : 2021.12.06
  • Published : 2021.12.31

Abstract

The purpose of this study is to effectively mitigate the bending displacement that occurs in the bridge due to forced vibration. We developed CTMD (Combine Tuned Mass Damper) that combines the relationship between spring and mass to control the bending behavior of simple beams. The experiment was conducted to confirm the control effect according to the change in the mass ratio of the developed CTMD. The developed CTMD is designed and manufactured so that the mass ratio can be adjusted according to the characteristics of the bridge. The maximum load of the spring applied to CTMD was fixed at 33.15 N. In order to evaluate the performance of the developed CTMD, a simple beam composed of hinges and rollers as boundary conditions was fabricated. In the experimental method, a CTMD was installed in the center of a simple beam and the deflection displacement according to the mass ratio was measured. The shaking condition was shaken at 3 Hz to induce the maximum bending behavior of the simple beam. As a result of the experiment, it was confirmed that when the optimal mass ratio was 2.1, the damping rate of the bending behavior displacement was about 71.2 %, indicating the best control effect.

본 연구는 강제진동으로 인해 교량에 발생되는 휨 변위를 효과적으로 완화하는 것이 목적이다. 단순보의 휨거동 제어를 위하여 스프링과 mass의 관계를 결합한 CTMD(Combine Tuned Mass Damper)를 개발하였다. 개발한 CTMD는 교량의 특성에 따라 질량비의 조절이 가능하도록 CTMD 내부의 Mass를 가감할 수 있는 Mass slot과 Mass block을 설계 제작하였다. CTMD에 적용된 Spring의 최대하중은 33.15N으로 고정하였다. 개발된 CTMD의 성능을 평가하기 위하여 길이 10m, 폭 0.6m, 높이 0.74m인 단순보를 제작하였다. 단순보의 지점조건은 한단 힌지, 한단 롤러로 구성하였다. 실험 방법은 단순보의 중앙에 CTMD를 설치하고 Mass를 조절하여 질량비에 변화를 주어 실험하였다. 이때 질량비에 따른 휨 거동 제어효과는 단순보의 중앙에 설치한 LVDT를 이용하여 측정하였다. 가진 조건은 단순보의 최대 휨 거동을 유발시키기 위하여 단순보의 힌지단에서 1.25m 떨어진 곳에 관성형가진기를 설치하여 3Hz로 흔들었다. 실험 결과 최적의 질량비가 2.1일 때 휨 거동 변위의 감쇠율이 약 71.2%로 최상의 제어효과를 나타내는 것으로 확인되었다.

Keywords

Acknowledgement

이 논문은 2018년도 정부(교육과학기술부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구사업(NRF-2018R1A6A1A03025542, NRF-2018R1D1A1B07050590)임. 본 연구가 이루어지도록 지원하여 준 한국연구재단에 대단히감사합니다.

References

  1. Housner, G. W., Bergman, L. A., Caughey, T. K., Chassiakos, A. G., Claus, R. O., Masri, S. F., Skelton, R. E., Soong, T. T., Spencer, B. H., and Yao, T. P. (1997), Structural control : Past, Present, and Future, Journal of Engineering Mechanics, ASCE, 123(9), 897-971 https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)
  2. Lim Q., Fan, J., Nie, J., Li, Q. and Chen, Y. (2010), Crowd-induced random vibration of footbridge and vibration control using multiple tuned mass dampers, Journal of Sound and Vibration, 329(19), 4068-4092. https://doi.org/10.1016/j.jsv.2010.04.013
  3. Banerji, P., Samanta, A. (2011), Earthquake vibration control of structures using hybrid mass liquid damper, Engineering Structures, 33(4), 1291-1301. https://doi.org/10.1016/j.engstruct.2011.01.006
  4. Kwon, Y. R., Choi, K. K. (2003), Study on the Vibration Control of Footbridge by Using Tuned Mass Damper(TMD), Journal of the Earthquake Engineering Society of Korea, 7(6), 9-15. https://doi.org/10.5000/EESK.2003.7.6.009
  5. Robert, J., McNamara. (1977) Tuned Mass Dampers for Buildings, Journal of Structural Division, ASCE., 103(9), 1785-1798. https://doi.org/10.1061/JSDEAG.0004721
  6. Kang, J. W., Kim, G. C., Kim, H. S. (2010), Seismic Control of Arch Structures using Semi-active TMD, Journal of the Korean Association for Spatial Structures, 10(1), 103-110.
  7. Kwon, H. C., Kim, M. C., Lee, J. H., Lee, I. W. (1996), Vibration Control of Bridges under Moving Loads, 16(1-3), 271-281.
  8. Debnath, N., Deb, S. K., Dutta, A. (2016), Multi-modal vibration control of truss bridges with tuned mass dampers under general loading, Journal of Vibration and Control, 22(20), 4121-4140. https://doi.org/10.1177/1077546315571172
  9. Min, K. W., Lee, Y. U. (1995), Free Vibration of Torsionally-coupled Buildings with Tuned Mass Dampers, Journal of the Architectural Instutute of Korea, 11(12), 245-251.
  10. Den Hartog, J. P. (1956), Mechanical Vibrations, McGraw-Hill, New York.
  11. Kim, H. J., Choi, S. Y., Jo, S. W., Hwang, J. S., Yu, E. J. (2011), Wind Response Monitoring of a Building with TMD, Journal of the Architectural Institute of Korea Structure&Construction, 27(12), 83-90.
  12. Park, K. S., Koh, H. M., Park, W. S., Ok, S. Y. (2002), Optimal Design of Multiple Tuned Mass Damper Considering Model Uncertainly of Structural System, Journal of Korean Society of Civil Engineers, 22(3A), 533-543.
  13. Abe. .M., Fujino, Y. (1994), Dynamic characterization of multiple tuned mass dampers and some design formulas, Earthquake Engineering and Structural Dynamics, 23(8), 813-835. https://doi.org/10.1002/eqe.4290230802
  14. Kareem, A., andvKline, S. (1995), Performance of Multiple Mass Dampers under Random Loading", Journal of Structural Engineering, 121(2), 349-361.
  15. Hayashikawa, T., Watanabe, N. (1981), Dynamic Behavior of Continuous Beams with Moving Loads, Journal of Engineering Mechanics Division, 107(1), 229-246. https://doi.org/10.1061/JMCEA3.0002694
  16. Gu, M., Chen, S. R. (2001), Chang CC. Parametric study on multiple tuend mass dampers for buffeting control of Yangpu Bridge, Journal of Wind Engineering and Industrial Aerodynamics, 89(11-12), 987-1000. https://doi.org/10.1016/S0167-6105(01)00094-0
  17. Nishitani, A., Inoue, Y. (2001), Overview of application of active/semiactive control to building structures in japan, Earthquake Engineering and Structural Dynamics, 30(11), 1565-1574. https://doi.org/10.1002/eqe.81