과제정보
Sponsored by the Deanship of Scientific Research; Grant no. (8178-SCI-2019-1-10-F), K.S.A, Northern Border University, Arar.
참고문헌
- Al Shami, A. L., & Otair, M. (2018). Enhancing Quality of Lossy Compressed Images using Minimum Decreasing Technique. International Journal of Advanced Computer Science and Applications, 9(3), 397-404.
- Alkhalayleh, M. A., & Otair, A. M. (2015). A new lossless method of image compression by decomposing the tree of Huffman technique. Int. J. Imaging Robot, 15(2), 79-96.
- Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-up robust features (SURF). Computer vision and image understanding, 110(3), 346-359. https://doi.org/10.1016/j.cviu.2007.09.014
- Dai, H., Dai, X., Li, X., Yi, X., Xiao, F., & Yang, G. (2020). A Multibranch Search Tree-Based Multi-Keyword Ranked Search Scheme over Encrypted Cloud Data. Security and Communication Networks, 2020.
- Du, A., Wang, L., Cheng, S., & Ao, N. (2020). A Privacy-Protected Image Retrieval Scheme for Fast and Secure Image Search. Symmetry, 12(2), 282. https://doi.org/10.3390/sym12020282
- El Makhfi, N. (2019). A word spotting method for Arabic manuscripts based on speeded up robust features technique. Adv. Sci., Technol. Eng. Syst. J., 4(6), 99-107. https://doi.org/10.25046/aj040612
- Faes, L., Wagner, S. K., Fu, D. J., Liu, X., Korot, E., Ledsam, J. R., ... & Moraes, G. (2019). Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study. The Lancet Digital Health, 1(5), e232-e242. https://doi.org/10.1016/s2589-7500(19)30108-6
- Hou, X., Yuille, A., & Koch, C. (2013). Boundary detection benchmarking: Beyond f-measures. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2123-2130).
- Intawong, K., Scuturici, M., & Miguet, S. (2013). A new pixel-based quality measure for segmentation algorithms integrating precision, recall and specificity. In International Conference on Computer Analysis of Images and Patterns (pp. 188-195). Springer, Berlin, Heidelberg.
- Jadia, A., & Chawla, M. P. S. (2020). Image Classification and Detection of Insulators using Bag of Visual Words and Speeded up Robust Features. International Journal of Innovative Science and Modern Engineering, vol. 6, no. 10, pp. 7-13, 2020. https://doi.org/10.35940/ijisme.J1260.0961020
- Latif, A., Rasheed, A., Sajid, U., Ahmed, J., Ali, N., Ratyal, N. I., ... & Khalil, T. (2019). Content-based image retrieval and feature extraction: a comprehensive review. Mathematical Problems in Engineering, 2019.
- Mendez, K. M., Pritchard, L., Reinke, S. N., & Broadhurst, D. I. (2019). Toward collaborative open data science in metabolomics using Jupyter Notebooks and cloud computing. Metabolomics, 15(10), 125. https://doi.org/10.1007/s11306-019-1588-0
- Moghimian, A., Mansoorizadeh, M., & Dezfoulian, M. (2019). Content based image retrieval using fusion of multilevel bag of visual words. SN Applied Sciences, 1(12), 1735. https://doi.org/10.1007/s42452-019-1793-5
- Muhathir, M., Hidayah, W., & Ifantiska, D. (2020). Utilization of Support Vector Machine and Speeded up Robust Features Extraction in Classifying Fruit Imagery. Computer Engineering and Applications Journal, 9(3), 183-193. https://doi.org/10.18495/comengapp.v9i3.347
- Nawaz, S. A., Li, J., Bhatti, U. A., Mehmood, A., Shoukat, M. U., & Bhatti, M. A. (2020). Advance hybrid medical watermarking algorithm using speeded up robust features and discrete cosine transform. Plos one, 15(6), e0232902. https://doi.org/10.1371/journal.pone.0232902
- Odat, A. M., & Otair, M. A. (2016). Image steganography using modified least significant bit. Indian Journal of Science and Technology, 9(39).
- Odat, A., Otair, M., & Al-Khalayleh, M. (2015). Comparative Study between LM-DH Technique and Huffman Coding. International Journal of Applied Engineering Research, 10(15), 36004-36011.
- Odat, A., Otair, M., & Shehadeh, F. (2015). Image denoising by comprehensive median filter. Int. J. Appl. Eng. Res, 10(15), 36016-36022.
- Otair, M. A. (2018). Security in Digital Images: From Information Hiding Perspective. In Digital Multimedia: Concepts, Methodologies, Tools, and Applications (pp. 81-95). IGI Global.
- Otair, M. A., & Shehadeh, F. (2016). Lossy Image Compression by Rounding the Intensity Followed by Dividing (RIFD). Research Journal of Applied Sciences, Engineering and Technology, 12(6), 680-685. https://doi.org/10.19026/rjaset.12.2716
- Sadeghi-Tehran, P., Angelov, P., Virlet, N., & Hawkesford, M. J. (2019). Scalable database indexing and fast image retrieval based on deep learning and hierarchically nested structure applied to remote sensing and plant biology. Journal of Imaging, 5(3), 33. https://doi.org/10.3390/jimaging5030033
- Sanchez, D., & Batet, M. (2017). Privacy-preserving data outsourcing in the cloud via semantic data splitting. Computer Communications, 110, 187-201. https://doi.org/10.1016/j.comcom.2017.06.012
- Wa, P. J., "Infolab Research at Stanford University," [Online]. Available: http://infolab.stanford.edu/~wangz/home/. [Accessed 17 Dec 2020].
- Ahmad H. Al-Omari, Lightweight Dynamic Crypto Algorithm for Next Internet Generation, (2019), Engineering, Technology and Applied Science Research (ETASR) 9(3):4203-4208 https://doi.org/10.48084/etasr.2743
- Ali, N., Bajwa, K. B., Sablatnig, R., Chatzichristofis, S. A., Iqbal, Z., Rashid, M., & Habib, H. A. (2016). A novel image retrieval based on visual words integration of SIFT and SURF. PloS one, 11(6), e0157428. https://doi.org/10.1371/journal.pone.0157428
- Madhavi, K. V., Tamilkodi, R., & Sudha, K. J. (2016). An innovative method for retrieving relevant images by getting the top-ranked images first using interactive genetic algorithm. Procedia Computer Science, 79, 254-261. https://doi.org/10.1016/j.procs.2016.03.033
- Tian X, Jiao L, Liu X, Zhang X. Feature integration of EODH and Color-SIFT: Application to image retrieval based on codebook. Signal Processing: Image Communication. 2014;29(4):530-545. https://doi.org/10.1016/j.image.2014.01.010
- Wang C, Zhang B, Qin Z, Xiong J. Spatial weighting for bag-of-features based image retrieval. In: Integrated Uncertainty in Knowledge Modelling and Decision Making. Springer; 2013. p. 91-100.
- Yu J, Qin Z, Wan T, Zhang X. Feature integration analysis of bag-of-features model for image retrieval. Neurocomputing. 2013;120:355-364. https://doi.org/10.1016/j.neucom.2012.08.061