• Title/Summary/Keyword: SURF Algorithm

Search Result 99, Processing Time 0.026 seconds

Multi-Person Tracking Using SURF and Background Subtraction for Surveillance

  • Yu, Juhee;Lee, Kyoung-Mi
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.344-358
    • /
    • 2019
  • Surveillance cameras have installed in many places because security and safety is becoming important in modern society. Through surveillance cameras installed, we can deal with troubles and prevent accidents. However, watching surveillance videos and judging the accidental situations is very labor-intensive. So now, the need for research to analyze surveillance videos is growing. This study proposes an algorithm to track multiple persons using SURF and background subtraction. While the SURF algorithm, as a person-tracking algorithm, is robust to scaling, rotating and different viewpoints, SURF makes tracking errors with sudden changes in videos. To resolve such tracking errors, we combined SURF with a background subtraction algorithm and showed that the proposed approach increased the tracking accuracy. In addition, the background subtraction algorithm can detect persons in videos, and SURF can initialize tracking targets with these detected persons, and thus the proposed algorithm can automatically detect the enter/exit of persons.

An Implementation of a Feature Extraction Hardware Accelerator based on Memory Usage Improvement SURF Algorithm (메모리 사용률을 개선한 SURF 알고리즘 특징점 추출기의 하드웨어 가속기 설계)

  • Jung, Chang-min;Kwak, Jae-chang;Lee, Kwang-yeob
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.77-80
    • /
    • 2013
  • SURF algorithm is an algorithm to extract feature points and to generate descriptors from input images. It is robust to change of environment such as scale, rotation, illumination and view points. Because of these features, it is used for many image processing applications such as object recognition, constructing panorama pictures and 3D image restoration. But there is disadvantage for real time operation because many recognition algorithms such as SURF algorithm requires a lot of calculations. In this paper, we propose a design of feature extractor and descriptor generator based on SURF for high memory efficiency. The proposed design reduced a memory access and memory usage to operate in real time.

  • PDF

The Study on Marker-less Tracking Algorithm Performance based on Mobile Augmented Reality (모바일 증강현실 기반의 마커리스 추적 알고리즘 성능 연구)

  • Yoon, Ji-Yean;Moon, Il-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.1032-1037
    • /
    • 2012
  • Augmented reality (AR) is augmented virtual information on the real world with real-time. And user can interact with information. In this paper, Marker-less tracking algorithm has been studied, for implement the augmented reality system on a mobile environment. In marker-less augmented reality, users do not need to attach the markers, and constrained the location. So, it's convenient to use. For marker-less tracking, I use the SURF algorithm based on feature point extraction in this paper. The SURF algorithm can be used on mobile devices because of the computational complexity is low. However, the SURF algorithm optimization work is not suitable for mobile devices. Therefore, in this paper, in order to the suitable tracking in mobile devices, the SURF algorithm was tested in a variety of environments. And ways to optimize has been studied.

Extended SURF Algorithm with Color Invariant Feature and Global Feature (컬러 불변 특징과 광역 특징을 갖는 확장 SURF(Speeded Up Robust Features) 알고리즘)

  • Yoon, Hyun-Sup;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.58-67
    • /
    • 2009
  • A correspondence matching is one of the important tasks in computer vision, and it is not easy to find corresponding points in variable environment where a scale, rotation, view point and illumination are changed. A SURF(Speeded Up Robust Features) algorithm have been widely used to solve the problem of the correspondence matching because it is faster than SIFT(Scale Invariant Feature Transform) with closely maintaining the matching performance. However, because SURF considers only gray image and local geometric information, it is difficult to match corresponding points on the image where similar local patterns are scattered. In order to solve this problem, this paper proposes an extended SURF algorithm that uses the invariant color and global geometric information. The proposed algorithm can improves the matching performance since the color information and global geometric information is used to discriminate similar patterns. In this paper, the superiority of the proposed algorithm is proved by experiments that it is compared with conventional methods on the image where an illumination and a view point are changed and similar patterns exist.

A Multiple Features Video Copy Detection Algorithm Based on a SURF Descriptor

  • Hou, Yanyan;Wang, Xiuzhen;Liu, Sanrong
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.502-510
    • /
    • 2016
  • Considering video copy transform diversity, a multi-feature video copy detection algorithm based on a Speeded-Up Robust Features (SURF) local descriptor is proposed in this paper. Video copy coarse detection is done by an ordinal measure (OM) algorithm after the video is preprocessed. If the matching result is greater than the specified threshold, the video copy fine detection is done based on a SURF descriptor and a box filter is used to extract integral video. In order to improve video copy detection speed, the Hessian matrix trace of the SURF descriptor is used to pre-match, and dimension reduction is done to the traditional SURF feature vector for video matching. Our experimental results indicate that video copy detection precision and recall are greatly improved compared with traditional algorithms, and that our proposed multiple features algorithm has good robustness and discrimination accuracy, as it demonstrated that video detection speed was also improved.

Stitcing for Panorama based on SURF and Multi-band Blending (SURF와 멀티밴드 블렌딩에 기반한 파노라마 스티칭)

  • Luo, Juan;Shin, Sung-Sik;Park, Hyun-Ju;Gwun, Ou-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.2
    • /
    • pp.201-209
    • /
    • 2011
  • This paper suggests a panorama image stitching system which consists of an image matching algorithm: modified SURF (Speeded Up Robust Feature) and an image blending algorithm: multi-band blending. In this paper, first, Modified SURF is described and SURF is compared with SIFT (Scale Invariant Feature Transform), which also gives the reason why modified SURF is chosen instead of SIFT. Then, multi-band blending is described, Lastly, the structure of a panorama image stitching system is suggested and evaluated by experiments, which includes stitching quality test and time cost experiment. According to the experiments, the proposed system can make the stitching seam invisible and get a perfect panorama for large image data, In addition, it is faster than the sift based stitching system.

A Fast Interest Point Detection Method in SURF Algorithm (SURF알고리듬에서의 고속 특징점 검출 방식)

  • Hwang, In-So;Eom, Il-Kyu;Moon, Yong-Ho;Ha, Seok-Wun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.1
    • /
    • pp.49-55
    • /
    • 2015
  • In this paper, we propose a fast interest point detection method using SURF algorithm. Since the SURF algorithm needs a great computations to detect the interest points and obtain the corresponding descriptors, it is not suitable for real-time based applications. In order to overcome this problem, the interest point detection step is parallelized by OpenMP and SIMD based on analysis of the scale space representation process and localization one in the step. The simulation results demonstrate that processing speed is enhanced about 55% by applying the proposed method.

FPGA based Implementation of FAST and BRIEF algorithm for Object Recognition (객체인식을 위한 FAST와 BRIEF 알고리즘 기반 FPGA 설계)

  • Heo, Hoon;Lee, Kwang-Yeob
    • Journal of IKEEE
    • /
    • v.17 no.2
    • /
    • pp.202-207
    • /
    • 2013
  • This paper implemented the conventional FAST and BRIEF algorithm as hardware on Zynq-7000 SoC Platform. Previous feature-based hardware accelerator is mostly implemented using the SIFT or SURF algorithm, but it requires excessive internal memory and hardware cost. The proposed FAST & BRIEF accelerator reduces approximately 57% of internal memory usage and 70% of hardware cost compared to the conventional SIFT or SURF accelerator, and it processes 0.17 pixel per Clock.

Hardware Design of SURF-based Feature extraction and description for Object Tracking (객체 추적을 위한 SURF 기반 특이점 추출 및 서술자 생성의 하드웨어 설계)

  • Do, Yong-Sig;Jeong, Yong-Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.83-93
    • /
    • 2013
  • Recently, the SURF algorithm, which is conjugated for object tracking system as part of many computer vision applications, is a well-known scale- and rotation-invariant feature detection algorithm. The SURF, due to its high computational complexity, there is essential to develop a hardware accelerator in order to be used on an IP in embedded environment. However, the SURF requires a huge local memory, causing many problems that increase the chip size and decrease the value of IP in ASIC and SoC system design. In this paper, we proposed a way to design a SURF algorithm in hardware with greatly reduced local memory by partitioning the algorithms into several Sub-IPs using external memory and a DMA. To justify validity of the proposed method, we developed an example of simplified object tracking algorithm. The execution speed of the hardware IP was about 31 frame/sec, the logic size was about 74Kgate in the 30nm technology with 81Kbytes local memory in the embedded system platform consisting of ARM Cortex-M0 processor, AMBA bus(AHB-lite and APB), DMA and a SDRAM controller. Hence, it can be used to the hardware IP of SoC Chip. If the image processing algorithm akin to SURF is applied to the method proposed in this paper, it is expected that it can implement an efficient hardware design for target application.

Face Recognition based on SURF Interest Point Extraction Algorithm (SURF 특징점 추출 알고리즘을 이용한 얼굴인식 연구)

  • Kang, Min-Ku;Choo, Won-Kook;Moon, Seung-Bin
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.3
    • /
    • pp.46-53
    • /
    • 2011
  • This paper proposes a SURF (Speeded Up Robust Features) based face recognition method which is one of typical interest point extraction algorithms. In general, SURF based object recognition is performed in interest point extraction and matching. In this paper, although, proposed method is employed not only in interest point extraction and matching, but also in face image rotation and interest point verification. image rotation is performed to increase the number of interest points and interest point verification is performed to find interest points which were matched correctly. Although proposed SURF based face recognition method requires more computation time than PCA based one, it shows better recognition rate than PCA algorithm. Through this experimental result, I confirmed that interest point extraction algorithm also can be adopted in face recognition.