DOI QR코드

DOI QR Code

Synthesis and Antimicrobial Properties of the Chitosan Derivatives

  • Lee, Eun Kyoung (Department of Pharmaceutical Biomedical Engineering, Cheongju University) ;
  • Kim, You Kyoung (Department of Applied Chemistry, Cheongju University)
  • 투고 : 2021.12.09
  • 심사 : 2021.12.24
  • 발행 : 2021.12.31

초록

In this study, chitosan obtained after varying extents of deacetylation (i.e., 10%, 30%, and 47%) was employed to introduce antibacterial properties to chitin. The deacetylation reaction completion, wherein the amino group content of chitin was reduced, was ascertained from the FT-IR and NMR analyses. The 47%-deacetylated chitosan exhibited superior antibacterial properties against Bacillus in a disk diffusion test. To further improve these properties, chitosan derivatives were grafted by acrylic acid and acrylamide. The varying concentrations of carboxyl groups, primary amines, and -CH2-CH2- with increasing acrylic acid and acrylamide contents were determined by FT-IR and NMR analyses. The enhanced antibacterial properties of the chitosan derivatives, owing to the increased acrylic acid and acrylamide contents, were revealed by the disk diffusion test. In particular, the derivatives with 1.3% acrylic acid and acrylamide showed the highest antibacterial activity, the bacterial reduction rate against Staphylococcus aureus and Escherichia coli being 99.9%, as observed through the ASTM E2149 standard test.

키워드

과제정보

이 연구는 2020년도 산업통상자원부 산업기술 평가관리원(KEIT)의 연구비 지원에의해수행되었음(grant no.: 20010265).

참고문헌

  1. K. B. Chin and S. H. Wang, "Product quality of low-fat sausage formulated with two levels of chitosan", J. Food Sci. Ani. Resour., 24, 363 (2004).
  2. S. K. Lee and S. R. Hong, "Gas permeation Characteristics through Chitosan-HNT Composite membrane", Membr. J., 24, 362 (2014).
  3. S. S. Park and H. K. Lee, "Antimicrobial finishing method of cotton fabrics or cellulosic fabrics", 10-2009-0121506 2009.
  4. A. Mittal, A. Singh, S. Benjakul, and K. Milsuwan, "Composite films based on chitosan and epigallocatechin gallate grafted chitosan: characterization, antioxidant and antimicrobial activities", Food Hydrocoll., 111, 106384 (2021). https://doi.org/10.1016/j.foodhyd.2020.106384
  5. S. I. Hong, J. H. Lee, H. J. Bae, S. Y. Koo, H. S. Lee, J. H. Choi, D. H. Kim, S. H. Park, and H. J. Park, "Effect of shear rate on structural, mechanical, and barrier properties of chitosan/montmorillonite nanocomposite film", J. Appl. Polym. Sci., 119, 2744 (2011).
  6. A. E. Hack, E. Mohamed, S. Manal, Z. Nial, and B. Gaber, "Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review", Int. J. Biol. Macromol., 169, 85 (2020). https://doi.org/10.1016/j.ijbiomac.2020.12.005
  7. J. S. Kim, "Effect of chitosan addition on the shelf-life of bread", J. Food Nutr., 17, 390 (2004).
  8. S. G. Kou, S. Gabriel, M. Linda, and M. R. Mucalo, "Chitosan: A review of sources and preparation methods", International Journal of Biological Macromolecules, Int. J. Biol. Macromol., 169, 85 (2021). https://doi.org/10.1016/j.ijbiomac.2020.12.005
  9. M. Khajavian, V. Vatanpour, and G. Boczkaj, "Chitin and derivative chitosan-based structures-Preparation strategies aided by deep eutectic solvents: A review", Carbohydr. Polym., 275, 118702 (2021).
  10. T. H. Kim, B. G. Kong, and J. W. Nah, "A Study on the Preparation of Chitin and Chitosan according to the Raw Materials", Theor. Appl. Chem. Eng., 9, 1584 (2003).
  11. J. M. Kim, K. W. Lee, J. S. Na, and S. J. Chung, "Effect of the Antimicrobial Activity of Chitosan Derivatives with Amino and Carboxyl Group", J. Chitin Chitosan, 14, 209 (2009).
  12. S. E. Darmon and K. M. Rudall, "Infra-red and X-ray studies of chitin", Discuss. Faraday Soc., 9, 251 (1950). https://doi.org/10.1039/DF9500900251
  13. S. Mima, M. Miya, R. Iwamoto, and S. Yoshikawa, "Highly deacetylated chitosan and its properties", J. Appl. Polym. Sci., 6, 323 (1983).
  14. C. W. Lee, H. J. Lee, and K. Kim, "A study on Deacetylation of Chitin for Preparation of Chitosan", Korean Chem. Eng. Res., 36, 499 (1998).
  15. D. A. Skoog, F. J. Holler, and S. R. Crouch, "Principles of Instrumental Analysis", CENGAGE, 7, 439 (2018).
  16. J. S. Choi, "Change of Viscosity and Degree of Deacetylation with Decalcification and Deacetylation Reaction Time on the Preparation of Chitosan", J. Korean Fish. Soc., 27, 997 (2001).
  17. F. G. Hellen, S. Francisco, P. G. Ferreira, and T. G. Cavalheiro, "A new look towards the thermal decomposition of chitins and chitosans with different degrees of deacetylation by coupled TG-FTIR", J. Carbohydr. Polym., 225, 115232 (2019). https://doi.org/10.1016/j.carbpol.2019.115232
  18. K. T. Lee, S. M. Park, and O. D. Baik, "Preparation and Rheological Properties of Chitin and Chitosan", J. Korean Fish. Soc., 28, 393 (1995).
  19. C. H. Kim, S. K. Jo, and B. O. Jung, "A study on the Graft Polymerization of 2-Acrylamido-2-Methylpropanesulfonic Acid on to Chitosan", J. Korean Ind. Eng. Chem., 6, 267 (1994).
  20. Y. K. Lee, "Study on preparation of PE Composite Film Containing Eugenol-Grafted Chitosan and Its Antioxidant and Antimicrobial Activities", J. Carbohydr. Polym., 151, 624 (2016). https://doi.org/10.1016/j.carbpol.2016.05.109
  21. Y. Uchida and A. Ohtakara, "Chitosanase from Bacillus species", Meth. Enzymol., 161, 501 (1988). https://doi.org/10.1016/0076-6879(88)61066-4
  22. N. K. Woei, H. L. Khor, and D. W. Hutmacher, "In vitro characterization of natural and synthetic dermal matrices cultured with human dermal fibroblasts", Biomaterials, 25, 2807 (2004). https://doi.org/10.1016/j.biomaterials.2003.09.058