References
- Arcot J, Shrestha A. 2005. Folate: methods of analysis. Trends Food Sci. Technol. 16: 253-266. https://doi.org/10.1016/j.tifs.2005.03.013
- Asrar FM, O'Connor DL. 2005. Bacterially synthesized folate and supplemental folic acid are absorbed across the large intestine of piglets. J. Nutr. Biochem. 16: 587-593. https://doi.org/10.1016/j.jnutbio.2005.02.006
- Kelly P, McPartlin J, Goggins M, Weir DG, Scott JM. 1997. Unmetabolized folic acid in serum: acute studies in subjects consuming fortified food and supplements. Am. Clin. Nutr. 65: 1790-1795. https://doi.org/10.1093/ajcn/65.6.1790
- Bailey LB, Gregory III JF. 1999. Folate metabolism and requirements. J. Nutr. 129: 779-782. https://doi.org/10.1093/jn/129.4.779
- Kim Y-I. 2000. Methylenetetrahydrofolate reductase polymorphisms, folate, and cancer risk: a paradigm of gene-nutrient interactions in carcinogenesis. Nutr. Rev. 58: 205-209. https://doi.org/10.1111/j.1753-4887.2000.tb01863.x
- Blom HJ, Smulders Y. 2011. Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. J. Inherit. Metab. Dis. 34: 75-81. https://doi.org/10.1007/s10545-010-9177-4
- Hubner R, Houlston R. 2009. Folate and colorectal cancer prevention. Br. J. Cancer 100: 233-239. https://doi.org/10.1038/sj.bjc.6604823
- Poe M, Hensens O, Hoogsteen K. 1979. 5-Methyl-5, 6, 7, 8-tetrahydrofolic acid. Conformation of the tetrahydropyrazine ring. J. Biol. Chem. 254: 10881-10884. https://doi.org/10.1016/S0021-9258(19)86604-8
- Nduati E, Diriye A, Ommeh S, Mwai L, Kiara S, Masseno V, et al. 2008. Effect of folate derivatives on the activity of antifolate drugs used against malaria and cancer. Parasitol. Res. 102: 1227-1234. https://doi.org/10.1007/s00436-008-0897-4
- Das JS, Duttagupta C, Ali E, Dhar TK. 1995. Improved microbiological assay for folic acid based on microtiter plating with Streptococcus faecalis. J. AOAC Int. 78: 1173-1177. https://doi.org/10.1093/jaoac/78.5.1173
- Lin M, Young C. 2000. Folate levels in cultures of lactic acid bacteria. Int. Dairy J. 10: 409-413. https://doi.org/10.1016/S0958-6946(00)00056-X
- Delchier N, Reich M, Renard CM. 2012. Impact of cooking methods on folates, ascorbic acid and lutein in green beans (Phaseolus vulgaris) and spinach (Spinacea oleracea). LWT-Food Sci. Technol. 49: 197-201. https://doi.org/10.1016/j.lwt.2012.06.017
- Berry RJ, Bailey L, Mulinare J, Bower C, Dary O. 2010. Fortification of flour with folic acid. Food Nutr. Bull. 31: S22-S35. https://doi.org/10.1177/15648265100311s103
- Blancquaert D, Storozhenko S, Loizeau K, De Steur H, De Brouwer V, Viaene J, et al. 2010. Folates and folic acid: from fundamental research toward sustainable health. Crit. Rev. Plant Sci. 29: 14-35. https://doi.org/10.1080/07352680903436283
- Wright AJ, Dainty JR, Finglas PM. 2007. Folic acid metabolism in human subjects revisited: potential implications for proposed mandatory folic acid fortification in the UK. Br. J. Nutr. 98: 667-675. https://doi.org/10.1017/S0007114507777140
- Ohrvik VE, Witthoft CM. 2011. Human folate bioavailability. Nutrients 3: 475-490. https://doi.org/10.3390/nu3040475
- Christensen KE, Mikael LG, Leung K-Y, Levesque N, Deng L, Wu Q, et al. 2015. High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice. Am. J. Clin. Nutr. 101: 646-658. https://doi.org/10.3945/ajcn.114.086603
- Hu J, Wang B, Sahyoun NR. 2016. Application of the key events dose-response framework to folate metabolism. Crit. Rev. Food Sci. Nutr. 56: 1325-1333. https://doi.org/10.1080/10408398.2013.807221
- Choi KE, Schilsky RL. 1988. Resolution of the stereoisomers of leucovorin and 5-methyltetrahydrofolate by chiral high-performance liquid chromatography. Anal. Biochem. 168: 398-404. https://doi.org/10.1016/0003-2697(88)90335-1
- Rossi M, Raimondi S, Costantino L, Amaretti A. 2016. Folate: Relevance of chemical and microbial production. pp.103-128. Industrial Biotechnology of Vitamins, Biopigments, and Antioxidants.
- Sybesma W, Starrenburg M, Kleerebezem M, Mierau I, de Vos WM, Hugenholtz J. 2003. Increased production of folate by metabolic engineering of Lactococcus lactis. Appl. Environ. Microbiol. 69: 3069-3076. https://doi.org/10.1128/AEM.69.6.3069-3076.2003
- Zhu T, Pan Z, Domagalski N, Koepsel R, Ataai M, Domach M. 2005. Engineering of Bacillus subtilis for enhanced total synthesis of folic acid. Appl. Environ. Microbiol. 71: 7122-7129. https://doi.org/10.1128/AEM.71.11.7122-7129.2005
- Serrano-Amatriain C, Ledesma-Amaro R, Lopez-Nicolas R, Ros G, Jimenez A, Revuelta JL. 2016. Folic acid production by engineered Ashbya gossypii. Metab. Eng. 38: 473-482. https://doi.org/10.1016/j.ymben.2016.10.011
- Song AA-L, In LLA, Lim SHE, Rahim RA. 2017. A review on Lactococcus lactis: from food to factory. Microb. Cell Fact. 16: 55. https://doi.org/10.1186/s12934-017-0669-x
- LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. 2013. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr. Opin. Biotechnol. 24: 160-168. https://doi.org/10.1016/j.copbio.2012.08.005
- Bermingham A, Derrick JP. 2002. The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery. Bioessays 24: 637-648. https://doi.org/10.1002/bies.10114
- Hanson AD, Gregory Iii JF. 2002. Synthesis and turnover of folates in plants. Curr. Opin. Plant Biol. 5: 244-249. https://doi.org/10.1016/S1369-5266(02)00249-2
- Hugenschmidt S, Schwenninger SM, Lacroix C. 2011. Concurrent high production of natural folate and vitamin B12 using a co-culture process with Lactobacillus plantarum SM39 and Propionibacterium freudenreichii DF13. Process Biochem. 46: 1063-1070. https://doi.org/10.1016/j.procbio.2011.01.021
- Maniatis T, Fritsch EF, Sambrook J. 1983. Molecular cloning : a laboratory manual. Anal. Biochem. 186: 182-183.
- Holo H, Nes IF. 1989. High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl. Environ. Microbiol. 55: 3119-3123. https://doi.org/10.1128/AEM.55.12.3119-3123.1989
- Mancini R, Saracino F, Buscemi G, Fischer M, Schramek N, Bracher A, et al. 1999. Complementation of the fol2 Deletion in Saccharomyces cerevisiae by human and Escherichia coli genes encoding GTP cyclohydrolase I. Biochem. Biophys. Res. Commun. 255: 521-527. https://doi.org/10.1006/bbrc.1998.9951
- Li S, Zhang J, Xu H, Feng X. 2016. Improved xylitol production from D-Arabitol by enhancing the coenzyme regeneration efficiency of the pentose phosphate pathway in Gluconobacter oxydans. J. Agric. Food Chem. 64: 1144-1150. https://doi.org/10.1021/acs.jafc.5b05509
- Leeming R, Pollock A, Melville L, Hamon C. 1990. Measurement of 5-methyltetrahydrofolic acid in man by high-performance liquid chromatography. Metabolism 39: 902-904. https://doi.org/10.1016/0026-0495(90)90298-Q
- Nandania J, Kokkonen M, Euro L, Velagapudi V. 2018. Simultaneous measurement of folate cycle intermediates in different biological matrices using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 1092: 168-178. https://doi.org/10.1016/j.jchromb.2018.06.008
- Sybesma W, Burgess C, Starrenburg M, van Sinderen D, Hugenholtz J. 2004. Multivitamin production in Lactococcus lactis using metabolic engineering. Metab. Eng. 6: 109-115. https://doi.org/10.1016/j.ymben.2003.11.002
- Jabrin S, Ravanel S, Gambonnet B, Douce R, Rebeille F. 2003. One-carbon metabolism in plants. regulation of tetrahydrofolate synthesis during germination and seedling development. Plant Physiol. 131: 1431-1439. https://doi.org/10.1104/pp.016915
- Yang J, Ogawa Y, Camakaris H, Shimada T, Ishihama A, Pittard A. 2007. folA, a new member of the TyrR regulon in Escherichia coli K-12. J. Bacteriol. 189: 6080-6084. https://doi.org/10.1128/JB.00482-07
- Plamann M, Stauffer G. 1989. Regulation of the Escherichia coli glyA gene by the metR gene product and homocysteine. J. Bacteriol. 171: 4958-4962. https://doi.org/10.1128/jb.171.9.4958-4962.1989
- Basset GJ, Quinlivan EP, Ravanel S, Rebeille F, Nichols BP, Shinozaki K, et al. 2004. Folate synthesis in plants: the p-aminobenzoate branch is initiated by a bifunctional PabA-PabB protein that is targeted to plastids. Proc. Natl. Acad. Sci. USA 101: 1496-1501. https://doi.org/10.1073/pnas.0308331100
- Jin X-M, Chang Y-K, Lee JH, Hong S-K. 2017. Effects of increased NADPH concentration by metabolic engineering of the pentose phosphate pathway on antibiotic production and sporulation in Streptomyces lividans TK24. J. Microbiol. Biotechnol. 27: 1867-1876. https://doi.org/10.4014/jmb.1707.07046
- Christodoulou D, Link H, Fuhrer T, Kochanowski K, Gerosa L, Sauer U. 2018. Reserve flux capacity in the pentose phosphate pathway enables Escherichia coli's rapid response to oxidative stress. Cell Syst. 6: 569-578. e567. https://doi.org/10.1016/j.cels.2018.04.009
- Rui B, Shen T, Zhou H, Liu J, Chen J, Pan X, et al. 2010. A systematic investigation of Escherichia coli central carbon metabolism in response to superoxide stress. BMC Syst. Biol. 4: 122. https://doi.org/10.1186/1752-0509-4-122
- Jägerstad M, Jastrebova J. 2013. Occurrence, stability, and determination of formyl folates in foods. J. Agric. Food Chem. 61: 9758-9768. https://doi.org/10.1021/jf4028427
- Kim J-H, Sung M-W, Lee E-H, Nam K-H, Hwang K-Y. 2008. Crystallization and preliminary X-ray diffraction analysis of 5, 10-methylenetetrahydrofolate dehydrogenase/cyclohydrolase from Thermoplasma acidophilum DSM 1728. J. Microbiol. Biotechnol. 18: 283-286.
- Solem C, Dehli T, Jensen PR. 2013. Rewiring Lactococcus lactis for ethanol production. Appl. Environ. Microbiol. 79: 2512-2518. https://doi.org/10.1128/AEM.03623-12
- Li Y, Hugenholtz J, Sybesma W, Abee T, Molenaar D. 2005. Using Lactococcus lactis for glutathione overproduction. Appl. Microbiol. Biotechnol. 67: 83-90. https://doi.org/10.1007/s00253-004-1762-8
- van de Guchte M, Van der Vossen J, Kok J, Venema G. 1989. Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 55: 224-228. https://doi.org/10.1128/AEM.55.1.224-228.1989