DOI QR코드

DOI QR Code

Physiological Characteristics of Lactobacillus casei Strains and Their Alleviation Effects against Inflammatory Bowel Disease

  • Liu, Yang (State Key Laboratory of Food Science and Technology, Jiangnan University) ;
  • Li, Yifeng (State Key Laboratory of Food Science and Technology, Jiangnan University) ;
  • Yu, Xinjie (Hwa Chong Institution (College)) ;
  • Yu, Leilei (State Key Laboratory of Food Science and Technology, Jiangnan University) ;
  • Tian, Fengwei (State Key Laboratory of Food Science and Technology, Jiangnan University) ;
  • Zhao, Jianxin (State Key Laboratory of Food Science and Technology, Jiangnan University) ;
  • Zhang, Hao (State Key Laboratory of Food Science and Technology, Jiangnan University) ;
  • Zhai, Qixiao (State Key Laboratory of Food Science and Technology, Jiangnan University) ;
  • Chen, Wei (State Key Laboratory of Food Science and Technology, Jiangnan University)
  • Received : 2020.03.23
  • Accepted : 2020.05.26
  • Published : 2021.01.28

Abstract

Lactobacillus casei, one of the most widely used probiotics, has been reported to alleviate multiple diseases. However, the effects of this species on intestinal diseases are strain-specific. Here, we aimed to screen L. casei strains with inflammatory bowel disease (IBD)-alleviating effects based on in vitro physiological characteristics. Therefore, the physiological characteristics of 29 L. casei strains were determined, including gastrointestinal transit tolerance, oligosaccharide fermentation, HT-29 cell adhesion, generation time, exopolysaccharide production, acetic acid production, and conjugated linoleic acid synthesis. The effects of five candidate strains on mice with induced colitis were also evaluated. The results showed that among all tested L. casei strains, only Lactobacillus casei M2S01 effectively relieved colitis. This strain recovered body weight, restored disease activity index score, and promoted anti-inflammatory cytokine expression. Gut microbiota sequencing showed that L. casei M2S01 restored a healthy gut microbiome composition. The western blotting showed that the alleviating effects of L. casei M2S01 on IBD were related to the inhibition of the NF-κB pathway. A good gastrointestinal tolerance ability may be one of the prerequisites for the IBD-alleviating effects of L. casei. Our results verified the efficacy of L. casei in alleviating IBD and lay the foundation for the rapid screening of L. casei strain with IBD-alleviating effects.

Keywords

References

  1. Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al. 2017. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390: 2769-2778. https://doi.org/10.1016/S0140-6736(17)32448-0
  2. Eisenstein M. 2016. Biology: a slow-motion epidemic. Nature 540: S98-S99. https://doi.org/10.1038/540S98a
  3. Ng SC, Kaplan GG, Tang W, Banerjee R, Adigopula B, Underwood FE, et al. 2018. Population density and risk of inflammatory bowel disease: A prospective population-based study in 13 countries or regions in Asia-Pacific. Am. J. Gastroenterol. 114: 107-115. https://doi.org/10.1038/s41395-018-0233-2
  4. Li Y, Liu M, Zhou J, Hou B, Su X, Liu Z, et al. 2019. Bacillus licheniformis Zhengchangsheng® attenuates DSS-induced colitis and modulates the gut microbiota in mice. Benef. Microbes. 10: 543-553. https://doi.org/10.3920/BM2018.0122
  5. Deng H, Zhi F, Fan HY, Bai Y, Zhang Y, Zhang Z, et al. 2018. Bacteroides fragilis prevents Clostridium difficile infection in a mouse model by restoring gut barrier and microbiome regulation. Front. Microbiol. 9: 2976. https://doi.org/10.3389/fmicb.2018.02976
  6. Chen X, Fu Y, Wang L, Qian W, Zheng F, Hou X. 2019. Bifidobacterium longum and VSL# 3® amelioration of TNBS-induced colitis associated with reduced HMGB1 and epithelial barrier impairment. Dev. Comp. Immunol. 92: 77-86. https://doi.org/10.1016/j.dci.2018.09.006
  7. Song L, Xie W, Liu Z, Guo D, Zhao D, Qiao X, et al. 2019. Oral delivery of a Lactococcus lactis strain secreting bovine lactoferricin- lactoferrampin alleviates the development of acute colitis in mice. Appl. Microbiol. Biotechnol. 103: 6169-6186. https://doi.org/10.1007/s00253-019-09898-6
  8. Zhang F, Li Y, Wang X, Wang S, Bi D. 2019. The impact of Lactobacillus plantarum on the gut microbiota of mice with DSS-induced colitis. Biomed. Res. Int. 2019: 3921315.
  9. Jang H-M, Lee K-E, Kim D-H. 2019. The preventive and curative effects of Lactobacillus reuteri NK33 and Bifidobacterium adolescentis NK98 on immobilization stress-induced anxiety/depression and colitis in mice. Nutrients 11: 819. https://doi.org/10.3390/nu11040819
  10. Oliva S, Di Nardo G, Ferrari F, Mallardo S, Rossi P, Patrizi G, et al. 2012. Randomised clinical trial: the effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active distal ulcerative colitis. Aliment. Pharm. Ther. 35: 327-334. https://doi.org/10.1111/j.1365-2036.2011.04939.x
  11. Ishikawa H, Matsumoto S, Ohashi Y, Imaoka A, Setoyama H, Umesaki Y, et al. 2011. Beneficial effects of probiotic bifidobacterium and galacto-oligosaccharide in patients with ulcerative colitis: a randomized controlled study. Digestion 84: 128-133. https://doi.org/10.1159/000322977
  12. Furrie E, Macfarlane S, Kennedy A, Cummings J, Walsh S, O'neil D, et al. 2005. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut 54: 242-249. https://doi.org/10.1136/gut.2004.044834
  13. Bjarnason I, Sission G. 2019. A randomised, double-blind, placebo-controlled trial of a multi-strain probiotic in patients with asymptomatic ulcerative colitis and Crohn's disease. Inflammopharmacology 27: 465-473. https://doi.org/10.1007/s10787-019-00595-4
  14. Sgouras D, Maragkoudakis P, Petraki K, Martinez-Gonzalez B, Eriotou E, Michopoulos S, et al. 2004. In vitro and in vivo inhibition of Helicobacter pylori by Lactobacillus casei strain Shirota. Appl. Environ. Microbiol. 70: 518-526. https://doi.org/10.1128/AEM.70.1.518-526.2004
  15. Xu C, Guo Y, Qiao L, Ma L, Cheng Y, Roman A. 2018. Biogenic synthesis of novel functionalized selenium nanoparticles by Lactobacillus casei ATCC 393 and its protective effects on intestinal barrier dysfunction caused by enterotoxigenic Escherichia coli K88. Front. Microbiol. 9: 1129. https://doi.org/10.3389/fmicb.2018.01129
  16. Zakostelska Z, Kverka M, Klimesova K, Rossmann P, Mrazek J, Kopecny J, et al. 2011. Lysate of probiotic Lactobacillus casei DN-114 001 ameliorates colitis by strengthening the gut barrier function and changing the gut microenvironment. PLoS One 6: e27961. https://doi.org/10.1371/journal.pone.0027961
  17. Thakur BK, Saha P, Banik G, Saha DR, Grover S, Batish VK, et al. 2016. Live and heat-killed probiotic Lactobacillus casei Lbs2 protects from experimental colitis through Toll-like receptor 2-dependent induction of T-regulatory response. Int. Immunopharmacol. 36: 39-50. https://doi.org/10.1016/j.intimp.2016.03.033
  18. Arena MP, Capozzi V, Spano G, Fiocco D. 2017. The potential of lactic acid bacteria to colonize biotic and abiotic surfaces and the investigation of their interactions and mechanisms. Appl. Microbiol. Biotechnol. 101, 2641-2657 https://doi.org/10.1007/s00253-017-8182-z
  19. Xie C, Li J, Wang K, Li Q, Chen D. 2015. Probiotics for the prevention of antibiotic-associated diarrhoea in older patients: a systematic review. Travel. Med. Infect. Dis. 13: 128-134. https://doi.org/10.1016/j.tmaid.2015.03.001
  20. Dunne C, O'Mahony L, Murphy L, Thornton G, Morrissey D, O'Halloran S, et al. 2001. In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am. J. Clin. Nutr. 73: 386s-392s.
  21. Winkler J, Butler R, Symonds E. 2007. Fructo-oligosaccharide reduces inflammation in a dextran sodium sulphate mouse model of colitis. Digest. Dis. Sci. 52: 52-58. https://doi.org/10.1007/s10620-006-9224-z
  22. Hidalgo-Cantabrana C, Lopez P, Gueimonde M, Clara G, Suarez A, Margolles A, et al. 2012. Immune modulation capability of exopolysaccharides synthesised by lactic acid bacteria and bifidobacteria. Probiotics. Antimicrob.Proteins 4: 227-237. https://doi.org/10.1007/s12602-012-9110-2
  23. Kamath PS, Hoepfner M, Phillips S. 1987. Short-chain fatty acids stimulate motility of the canine ileum. Am. J. Physiol. 253: G427-G433.
  24. Feng Y, Wang Y, Wang P, Huang Y, Wang F. 2018. Short-chain fatty acids manifest stimulative and protective effects on intestinal barrier function through the inhibition of NLRP3 inflammasome and autophagy. Cell. Physiol. Biochem. 49: 190-205. https://doi.org/10.1159/000492853
  25. Jones SE, Paynich ML, Kearns DB, Knight KL. 2014. Protection from intestinal inflammation by bacterial exopolysaccharides. J. Immunol. 192: 4813-4820. https://doi.org/10.4049/jimmunol.1303369
  26. Li R, Zhang Y, Polk DB, Tomasula PM, Yan F, Liu L. 2016. Preserving viability of Lactobacillus rhamnosus GG in vitro and in vivo by a new encapsulation system. J. Control. Release 230: 79-87. https://doi.org/10.1016/j.jconrel.2016.04.009
  27. Shinde T, Perera AP, Vemuri R, Gondalia SV, Karpe AV, Beale DJ, et al. 2019. Synbiotic supplementation containing whole plant sugar cane fibre and probiotic spores potentiates protective synergistic effects in mouse model of IBD. Nutrients 11: 818. https://doi.org/10.3390/nu11040818
  28. Sengul N, Aslim B, Ucar G, Yucel N, Isik S, Bozkurt H, et al. 2006. Effects of exopolysaccharide-producing probiotic strains on experimental colitis in rats. Dis. Colon Rectum. 49: 250-258. https://doi.org/10.1007/s10350-005-0267-6
  29. Maragkoudakis PA, Zoumpopoulou G, Miaris C, Kalantzopoulos G, Pot B, Tsakalidou E. 2006. Probiotic potential of Lactobacillus strains isolated from dairy products. Int. Dairy. J. 16: 189-199. https://doi.org/10.1016/j.idairyj.2005.02.009
  30. Kaplan H, Hutkins RW. 2000. Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Appl. Environ. Microbiol. 66: 2682-2684. https://doi.org/10.1128/AEM.66.6.2682-2684.2000
  31. Walsham AD, MacKenzie DA, Cook V, Wemyss-Holden S, Hews CL, Juge N, et al. 2016. Lactobacillus reuteri inhibition of enteropathogenic Escherichia coli adherence to human intestinal epithelium. Front. Microbiol. 7: 244. https://doi.org/10.3389/fmicb.2016.00244
  32. Shi Y, Zhao J, Kellingray L, Zhang H, Narbad A, Zhai Q, et al. 2019. 2019. In vitro and in vivo evaluation of Lactobacillus strains and comparative genomic analysis of Lactobacillus plantarum CGMCC12436 reveal candidates of colonise-related genes. Food Res. Int. 119: 813-821. https://doi.org/10.1016/j.foodres.2018.10.064
  33. Tallon R, Bressollier P, Urdaci MC. 2003. 2003. Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56. Res. Microbiol. 154: 705-712. https://doi.org/10.1016/j.resmic.2003.09.006
  34. Wang L, Hu L, Xu Q, Jiang T, Fang S, Wang G, et al. 2017. Bifidobacteria exert species-specific effects on constipation in BALB/c mice. Food. Funct. 8: 3587-3600. https://doi.org/10.1039/c6fo01641c
  35. Yang B, Chen H, Gu Z, Tian F, Ross R, Stanton C, et al. 2014. Synthesis of conjugated linoleic acid by the linoleate isomerase complex in food‐derived lactobacilli. J. Appl. Microbiol. 117: 430-439. https://doi.org/10.1111/jam.12524
  36. Wang L, Pan M, Li D, Yin Y, Jiang T, Fang S, et al. 2017. Metagenomic insights into the effects of oligosaccharides on the microbial composition of cecal contents in constipated mice. J. Funct. Foods 38: 486-496. https://doi.org/10.1016/j.jff.2017.09.045
  37. Marco ML, De Vries MC, Wels M, Molenaar D, Mangell P, Ahrne S, et al. 2010. Convergence in probiotic Lactobacillus gut-adaptive responses in humans and mice. ISME J. 4: 1481. https://doi.org/10.1038/ismej.2010.61
  38. Wang L, Hu L, Yan S, Jiang T, Fang S, Wang G, et al. 2017. Effects of different oligosaccharides at various dosages on the composition of gut microbiota and short-chain fatty acids in mice with constipation. Food Funct. 8: 1966-1978. https://doi.org/10.1039/c7fo00031f
  39. McBain A, Macfarlane G. Modulation of genotoxic enzyme activities by non-digestible oligosaccharide metabolism in in-vitro human gut bacterial ecosystems. J. Med. Microbiol. 50: 833-842. https://doi.org/10.1099/0022-1317-50-9-833
  40. Peng X, Li S, Luo J, Wu X, Liu L. 2013. Effects of dietary fibers and their mixtures on short chain fatty acids and microbiota in mice guts. Food Funct. 4: 932-938. https://doi.org/10.1039/c3fo60052a
  41. Dutra V, Silva AC, Cabrita P, Peres C, Malcata X, Brito L. 2016. Lactobacillus plantarum LB95 impairs the virulence potential of Gram-positive and Gram-negative food-borne pathogens in HT-29 and Vero cell cultures. J. Med. Microbiol. 65: 28-35. https://doi.org/10.1099/jmm.0.000196
  42. Rong J, Zheng H, Liu M, Hu X, Wang T, Zhang X, et al. 2015. Probiotic and anti-inflammatory attributes of an isolate Lactobacillus helveticus NS8 from Mongolian fermented koumiss. BMC Microbiol. 15: 196. https://doi.org/10.1186/s12866-015-0525-2
  43. Yadav AK, Tyagi A, Kumar A, Panwar S, Grover S, Saklani AC, et al. 2017. Adhesion of lactobacilli and their anti-infectivity potential. Crit. Rev. Food Sci. 57: 2042-2056. https://doi.org/10.1080/10408398.2014.918533
  44. Khan MA, Ma C, Knodler LA, Valdez Y, Rosenberger CM, Deng W, et al. 2006. Toll-like receptor 4 contributes to colitis development but not to host defense during Citrobacter rodentium infection in mice. Infect. Immun. 74: 2522-2536. https://doi.org/10.1128/IAI.74.5.2522-2536.2006
  45. Wang J, Wu T, Fang X, Min W, Yang Z. 2018. Characterization and immunomodulatory activity of an exopolysaccharide produced by Lactobacillus plantarum JLK0142 isolated from fermented dairy tofu. Int. J. Biol. Macromol. 115: 985-993. https://doi.org/10.1016/j.ijbiomac.2018.04.099
  46. Ou Y, Xu S, Zhu D, Yang X. 2014. 2014. Molecular mechanisms of exopolysaccharide from Aphanothece halaphytica (EPSAH) induced apoptosis in HeLa cells. PLoS One 9: e87223. https://doi.org/10.1371/journal.pone.0087223
  47. Hague A, Elder DJ, Hicks DJ, Paraskeva C. 1995. Apoptosis in colorectal tumour cells: induction by the short chain fatty acids butyrate, propionate and acetate and by the bile salt deoxycholate. Int. J. Cancer 60: 400-406. https://doi.org/10.1002/ijc.2910600322
  48. Ochoa JJ, Farquharson AJ, Grant I, Moffat L, Heys SD, Wahle KW. 2004. Conjugated linoleic acids (CLAs) decrease prostate cancer cell proliferation: different molecular mechanisms for cis-9, trans-11 and trans-10, cis-12 isomers. Carcinogenesis 25: 1185-1191. https://doi.org/10.1093/carcin/bgh116
  49. Malinska H, Huttl M, Oliyarnyk O, Bratova M, Kazdova L. 2015. Conjugated linoleic acid reduces visceral and ectopic lipid accumulation and insulin resistance in chronic severe hypertriacylglycerolemia. Nutrition 31: 1045-1051. https://doi.org/10.1016/j.nut.2015.03.011
  50. Bruen R, Fitzsimons S, Belton O. 2017. Atheroprotective effects of conjugated linoleic acid. Br. J. Clin. Pharmacl. 83: 46-53. https://doi.org/10.1111/bcp.12948
  51. Bassaganya-Riera J, Reynolds K, Martino-Catt S, Cui Y, Hennighausen L, Gonzalez F, et al. 2004. Activation of PPAR γ and δ by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology 127: 777-791. https://doi.org/10.1053/j.gastro.2004.06.049
  52. Evans NP, Misyak SA, Schmelz EM, Guri AJ, Hontecillas R, Bassaganya-Riera J. 2010. Conjugated linoleic acid ameliorates inflammation-induced colorectal cancer in mice through activation of PPARγ. J. Nutr. 140: 515-521. https://doi.org/10.3945/jn.109.115642
  53. Zhang M, Sun K, Wu Y, Yang Y, Tso P, Wu Z. 2017. Interactions between intestinal microbiota and host immune response in inflammatory bowel disease. Front. Immunl. 8: 942. https://doi.org/10.3389/fimmu.2017.00942
  54. Ip WE, Hoshi N, Shouval DS, Snapper S, Medzhitov R. 2017. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356: 513-519. https://doi.org/10.1126/science.aal3535
  55. Lindemans CA, Calafiore M, Mertelsmann AM, O'connor MH, Dudakov JA, Jenq RR, et al. 2015. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 528: 560-564. https://doi.org/10.1038/nature16460
  56. Hoberg JE, Popko AE, Ramsey CS, Mayo MW. 2006. IκB kinase α-mediated derepression of SMRT potentiates acetylation of RelA/p65 by p300. Mol. Cell. Biol. 26: 457-471. https://doi.org/10.1128/MCB.26.2.457-471.2006
  57. Al-Ashy R, Chakroun I, El-Sabban ME, Homaidan FR. 2006. The role of NF-kappaB in mediating the anti-inflammatory effects of IL-10 in intestinal epithelial cells. Cytokine 36: 1-8. https://doi.org/10.1016/j.cyto.2006.10.003
  58. Lightfoot YL, Selle K, Yang T, Goh YJ, Sahay B, Zadeh M, et al. 2015. SIGNR3‐dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis. EMBO J. 34: 881-895. https://doi.org/10.15252/embj.201490296
  59. Yoda K, Miyazawa K, Hosoda M, Hiramatsu M, Yan F, He F. 2014. Lactobacillus GG-fermented milk prevents DSS-induced colitis and regulates intestinal epithelial homeostasis through activation of epidermal growth factor receptor. Eur. J. Nutr. 53: 105-115. https://doi.org/10.1007/s00394-013-0506-x
  60. Bansal T, Alaniz RC, Wood TK, Jayaraman A. 2010. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc. Natl. Acad. Sci. USA 107: 228-233. https://doi.org/10.1073/pnas.0906112107
  61. Corr SC, Li Y, Riedel CU, O'Toole PW, Hill C, Gahan CG. 2007. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc. Natl. Acad. Sci. USA 104: 7617-7621. https://doi.org/10.1073/pnas.0700440104
  62. Thirabunyanon M, Hongwittayakorn P. 2013. 2013. Potential probiotic lactic acid bacteria of human origin induce antiproliferation of colon cancer cells via synergic actions in adhesion to cancer cells and short-chain fatty acid bioproduction. Appl. Biochem. Biotechnol. 169: 511-525. https://doi.org/10.1007/s12010-012-9995-y
  63. Feng J, Liu P, Yang X, Zhao X. 2015. Screening of immunomodulatory and adhesive Lactobacillus with antagonistic activities against Salmonella from fermented vegetables. World. J. Microb. Biotechnol. 31: 1947-1954. https://doi.org/10.1007/s11274-015-1939-6
  64. Nagata Y, Hashiguchi K, Kamimura Y, Yoshida M, Gomyo T. 2009. The gastrointestinal transit tolerance of Lactobacillus plantarum strain No. 14 depended on the carbon source. Biosci. Biotechnol. Biochnol. 73: 2650-2655. https://doi.org/10.1271/bbb.90498
  65. Peng M, Tabashpengsum Z, Patel P, Bernhardt C, Biswas D. 2018. Linoleic acids overproducing Lactobacillus casei limits growth, survival, and virulence of Salmonella Typhimurium and enterohaemorrhagic Escherichia coli. Front. Microbiol. 9: 2663. https://doi.org/10.3389/fmicb.2018.02663

Cited by

  1. Evaluation of the Effects of Different Bacteroides vulgatus Strains against DSS-Induced Colitis vol.2021, 2021, https://doi.org/10.1155/2021/9117805
  2. Evidence from comparative genomic analyses indicating that Lactobacillus-mediated irritable bowel syndrome alleviation is mediated by conjugated linoleic acid synthesis vol.12, pp.3, 2021, https://doi.org/10.1039/d0fo02616f