References
- Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al. 2017. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390: 2769-2778. https://doi.org/10.1016/S0140-6736(17)32448-0
- Eisenstein M. 2016. Biology: a slow-motion epidemic. Nature 540: S98-S99. https://doi.org/10.1038/540S98a
- Ng SC, Kaplan GG, Tang W, Banerjee R, Adigopula B, Underwood FE, et al. 2018. Population density and risk of inflammatory bowel disease: A prospective population-based study in 13 countries or regions in Asia-Pacific. Am. J. Gastroenterol. 114: 107-115. https://doi.org/10.1038/s41395-018-0233-2
- Li Y, Liu M, Zhou J, Hou B, Su X, Liu Z, et al. 2019. Bacillus licheniformis Zhengchangsheng® attenuates DSS-induced colitis and modulates the gut microbiota in mice. Benef. Microbes. 10: 543-553. https://doi.org/10.3920/BM2018.0122
- Deng H, Zhi F, Fan HY, Bai Y, Zhang Y, Zhang Z, et al. 2018. Bacteroides fragilis prevents Clostridium difficile infection in a mouse model by restoring gut barrier and microbiome regulation. Front. Microbiol. 9: 2976. https://doi.org/10.3389/fmicb.2018.02976
- Chen X, Fu Y, Wang L, Qian W, Zheng F, Hou X. 2019. Bifidobacterium longum and VSL# 3® amelioration of TNBS-induced colitis associated with reduced HMGB1 and epithelial barrier impairment. Dev. Comp. Immunol. 92: 77-86. https://doi.org/10.1016/j.dci.2018.09.006
- Song L, Xie W, Liu Z, Guo D, Zhao D, Qiao X, et al. 2019. Oral delivery of a Lactococcus lactis strain secreting bovine lactoferricin- lactoferrampin alleviates the development of acute colitis in mice. Appl. Microbiol. Biotechnol. 103: 6169-6186. https://doi.org/10.1007/s00253-019-09898-6
- Zhang F, Li Y, Wang X, Wang S, Bi D. 2019. The impact of Lactobacillus plantarum on the gut microbiota of mice with DSS-induced colitis. Biomed. Res. Int. 2019: 3921315.
- Jang H-M, Lee K-E, Kim D-H. 2019. The preventive and curative effects of Lactobacillus reuteri NK33 and Bifidobacterium adolescentis NK98 on immobilization stress-induced anxiety/depression and colitis in mice. Nutrients 11: 819. https://doi.org/10.3390/nu11040819
- Oliva S, Di Nardo G, Ferrari F, Mallardo S, Rossi P, Patrizi G, et al. 2012. Randomised clinical trial: the effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active distal ulcerative colitis. Aliment. Pharm. Ther. 35: 327-334. https://doi.org/10.1111/j.1365-2036.2011.04939.x
- Ishikawa H, Matsumoto S, Ohashi Y, Imaoka A, Setoyama H, Umesaki Y, et al. 2011. Beneficial effects of probiotic bifidobacterium and galacto-oligosaccharide in patients with ulcerative colitis: a randomized controlled study. Digestion 84: 128-133. https://doi.org/10.1159/000322977
- Furrie E, Macfarlane S, Kennedy A, Cummings J, Walsh S, O'neil D, et al. 2005. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut 54: 242-249. https://doi.org/10.1136/gut.2004.044834
- Bjarnason I, Sission G. 2019. A randomised, double-blind, placebo-controlled trial of a multi-strain probiotic in patients with asymptomatic ulcerative colitis and Crohn's disease. Inflammopharmacology 27: 465-473. https://doi.org/10.1007/s10787-019-00595-4
- Sgouras D, Maragkoudakis P, Petraki K, Martinez-Gonzalez B, Eriotou E, Michopoulos S, et al. 2004. In vitro and in vivo inhibition of Helicobacter pylori by Lactobacillus casei strain Shirota. Appl. Environ. Microbiol. 70: 518-526. https://doi.org/10.1128/AEM.70.1.518-526.2004
- Xu C, Guo Y, Qiao L, Ma L, Cheng Y, Roman A. 2018. Biogenic synthesis of novel functionalized selenium nanoparticles by Lactobacillus casei ATCC 393 and its protective effects on intestinal barrier dysfunction caused by enterotoxigenic Escherichia coli K88. Front. Microbiol. 9: 1129. https://doi.org/10.3389/fmicb.2018.01129
- Zakostelska Z, Kverka M, Klimesova K, Rossmann P, Mrazek J, Kopecny J, et al. 2011. Lysate of probiotic Lactobacillus casei DN-114 001 ameliorates colitis by strengthening the gut barrier function and changing the gut microenvironment. PLoS One 6: e27961. https://doi.org/10.1371/journal.pone.0027961
- Thakur BK, Saha P, Banik G, Saha DR, Grover S, Batish VK, et al. 2016. Live and heat-killed probiotic Lactobacillus casei Lbs2 protects from experimental colitis through Toll-like receptor 2-dependent induction of T-regulatory response. Int. Immunopharmacol. 36: 39-50. https://doi.org/10.1016/j.intimp.2016.03.033
- Arena MP, Capozzi V, Spano G, Fiocco D. 2017. The potential of lactic acid bacteria to colonize biotic and abiotic surfaces and the investigation of their interactions and mechanisms. Appl. Microbiol. Biotechnol. 101, 2641-2657 https://doi.org/10.1007/s00253-017-8182-z
- Xie C, Li J, Wang K, Li Q, Chen D. 2015. Probiotics for the prevention of antibiotic-associated diarrhoea in older patients: a systematic review. Travel. Med. Infect. Dis. 13: 128-134. https://doi.org/10.1016/j.tmaid.2015.03.001
- Dunne C, O'Mahony L, Murphy L, Thornton G, Morrissey D, O'Halloran S, et al. 2001. In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am. J. Clin. Nutr. 73: 386s-392s.
- Winkler J, Butler R, Symonds E. 2007. Fructo-oligosaccharide reduces inflammation in a dextran sodium sulphate mouse model of colitis. Digest. Dis. Sci. 52: 52-58. https://doi.org/10.1007/s10620-006-9224-z
- Hidalgo-Cantabrana C, Lopez P, Gueimonde M, Clara G, Suarez A, Margolles A, et al. 2012. Immune modulation capability of exopolysaccharides synthesised by lactic acid bacteria and bifidobacteria. Probiotics. Antimicrob.Proteins 4: 227-237. https://doi.org/10.1007/s12602-012-9110-2
- Kamath PS, Hoepfner M, Phillips S. 1987. Short-chain fatty acids stimulate motility of the canine ileum. Am. J. Physiol. 253: G427-G433.
- Feng Y, Wang Y, Wang P, Huang Y, Wang F. 2018. Short-chain fatty acids manifest stimulative and protective effects on intestinal barrier function through the inhibition of NLRP3 inflammasome and autophagy. Cell. Physiol. Biochem. 49: 190-205. https://doi.org/10.1159/000492853
- Jones SE, Paynich ML, Kearns DB, Knight KL. 2014. Protection from intestinal inflammation by bacterial exopolysaccharides. J. Immunol. 192: 4813-4820. https://doi.org/10.4049/jimmunol.1303369
- Li R, Zhang Y, Polk DB, Tomasula PM, Yan F, Liu L. 2016. Preserving viability of Lactobacillus rhamnosus GG in vitro and in vivo by a new encapsulation system. J. Control. Release 230: 79-87. https://doi.org/10.1016/j.jconrel.2016.04.009
- Shinde T, Perera AP, Vemuri R, Gondalia SV, Karpe AV, Beale DJ, et al. 2019. Synbiotic supplementation containing whole plant sugar cane fibre and probiotic spores potentiates protective synergistic effects in mouse model of IBD. Nutrients 11: 818. https://doi.org/10.3390/nu11040818
- Sengul N, Aslim B, Ucar G, Yucel N, Isik S, Bozkurt H, et al. 2006. Effects of exopolysaccharide-producing probiotic strains on experimental colitis in rats. Dis. Colon Rectum. 49: 250-258. https://doi.org/10.1007/s10350-005-0267-6
- Maragkoudakis PA, Zoumpopoulou G, Miaris C, Kalantzopoulos G, Pot B, Tsakalidou E. 2006. Probiotic potential of Lactobacillus strains isolated from dairy products. Int. Dairy. J. 16: 189-199. https://doi.org/10.1016/j.idairyj.2005.02.009
- Kaplan H, Hutkins RW. 2000. Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Appl. Environ. Microbiol. 66: 2682-2684. https://doi.org/10.1128/AEM.66.6.2682-2684.2000
- Walsham AD, MacKenzie DA, Cook V, Wemyss-Holden S, Hews CL, Juge N, et al. 2016. Lactobacillus reuteri inhibition of enteropathogenic Escherichia coli adherence to human intestinal epithelium. Front. Microbiol. 7: 244. https://doi.org/10.3389/fmicb.2016.00244
- Shi Y, Zhao J, Kellingray L, Zhang H, Narbad A, Zhai Q, et al. 2019. 2019. In vitro and in vivo evaluation of Lactobacillus strains and comparative genomic analysis of Lactobacillus plantarum CGMCC12436 reveal candidates of colonise-related genes. Food Res. Int. 119: 813-821. https://doi.org/10.1016/j.foodres.2018.10.064
- Tallon R, Bressollier P, Urdaci MC. 2003. 2003. Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56. Res. Microbiol. 154: 705-712. https://doi.org/10.1016/j.resmic.2003.09.006
- Wang L, Hu L, Xu Q, Jiang T, Fang S, Wang G, et al. 2017. Bifidobacteria exert species-specific effects on constipation in BALB/c mice. Food. Funct. 8: 3587-3600. https://doi.org/10.1039/c6fo01641c
- Yang B, Chen H, Gu Z, Tian F, Ross R, Stanton C, et al. 2014. Synthesis of conjugated linoleic acid by the linoleate isomerase complex in food‐derived lactobacilli. J. Appl. Microbiol. 117: 430-439. https://doi.org/10.1111/jam.12524
- Wang L, Pan M, Li D, Yin Y, Jiang T, Fang S, et al. 2017. Metagenomic insights into the effects of oligosaccharides on the microbial composition of cecal contents in constipated mice. J. Funct. Foods 38: 486-496. https://doi.org/10.1016/j.jff.2017.09.045
- Marco ML, De Vries MC, Wels M, Molenaar D, Mangell P, Ahrne S, et al. 2010. Convergence in probiotic Lactobacillus gut-adaptive responses in humans and mice. ISME J. 4: 1481. https://doi.org/10.1038/ismej.2010.61
- Wang L, Hu L, Yan S, Jiang T, Fang S, Wang G, et al. 2017. Effects of different oligosaccharides at various dosages on the composition of gut microbiota and short-chain fatty acids in mice with constipation. Food Funct. 8: 1966-1978. https://doi.org/10.1039/c7fo00031f
- McBain A, Macfarlane G. Modulation of genotoxic enzyme activities by non-digestible oligosaccharide metabolism in in-vitro human gut bacterial ecosystems. J. Med. Microbiol. 50: 833-842. https://doi.org/10.1099/0022-1317-50-9-833
- Peng X, Li S, Luo J, Wu X, Liu L. 2013. Effects of dietary fibers and their mixtures on short chain fatty acids and microbiota in mice guts. Food Funct. 4: 932-938. https://doi.org/10.1039/c3fo60052a
- Dutra V, Silva AC, Cabrita P, Peres C, Malcata X, Brito L. 2016. Lactobacillus plantarum LB95 impairs the virulence potential of Gram-positive and Gram-negative food-borne pathogens in HT-29 and Vero cell cultures. J. Med. Microbiol. 65: 28-35. https://doi.org/10.1099/jmm.0.000196
- Rong J, Zheng H, Liu M, Hu X, Wang T, Zhang X, et al. 2015. Probiotic and anti-inflammatory attributes of an isolate Lactobacillus helveticus NS8 from Mongolian fermented koumiss. BMC Microbiol. 15: 196. https://doi.org/10.1186/s12866-015-0525-2
- Yadav AK, Tyagi A, Kumar A, Panwar S, Grover S, Saklani AC, et al. 2017. Adhesion of lactobacilli and their anti-infectivity potential. Crit. Rev. Food Sci. 57: 2042-2056. https://doi.org/10.1080/10408398.2014.918533
- Khan MA, Ma C, Knodler LA, Valdez Y, Rosenberger CM, Deng W, et al. 2006. Toll-like receptor 4 contributes to colitis development but not to host defense during Citrobacter rodentium infection in mice. Infect. Immun. 74: 2522-2536. https://doi.org/10.1128/IAI.74.5.2522-2536.2006
- Wang J, Wu T, Fang X, Min W, Yang Z. 2018. Characterization and immunomodulatory activity of an exopolysaccharide produced by Lactobacillus plantarum JLK0142 isolated from fermented dairy tofu. Int. J. Biol. Macromol. 115: 985-993. https://doi.org/10.1016/j.ijbiomac.2018.04.099
- Ou Y, Xu S, Zhu D, Yang X. 2014. 2014. Molecular mechanisms of exopolysaccharide from Aphanothece halaphytica (EPSAH) induced apoptosis in HeLa cells. PLoS One 9: e87223. https://doi.org/10.1371/journal.pone.0087223
- Hague A, Elder DJ, Hicks DJ, Paraskeva C. 1995. Apoptosis in colorectal tumour cells: induction by the short chain fatty acids butyrate, propionate and acetate and by the bile salt deoxycholate. Int. J. Cancer 60: 400-406. https://doi.org/10.1002/ijc.2910600322
- Ochoa JJ, Farquharson AJ, Grant I, Moffat L, Heys SD, Wahle KW. 2004. Conjugated linoleic acids (CLAs) decrease prostate cancer cell proliferation: different molecular mechanisms for cis-9, trans-11 and trans-10, cis-12 isomers. Carcinogenesis 25: 1185-1191. https://doi.org/10.1093/carcin/bgh116
- Malinska H, Huttl M, Oliyarnyk O, Bratova M, Kazdova L. 2015. Conjugated linoleic acid reduces visceral and ectopic lipid accumulation and insulin resistance in chronic severe hypertriacylglycerolemia. Nutrition 31: 1045-1051. https://doi.org/10.1016/j.nut.2015.03.011
- Bruen R, Fitzsimons S, Belton O. 2017. Atheroprotective effects of conjugated linoleic acid. Br. J. Clin. Pharmacl. 83: 46-53. https://doi.org/10.1111/bcp.12948
- Bassaganya-Riera J, Reynolds K, Martino-Catt S, Cui Y, Hennighausen L, Gonzalez F, et al. 2004. Activation of PPAR γ and δ by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology 127: 777-791. https://doi.org/10.1053/j.gastro.2004.06.049
- Evans NP, Misyak SA, Schmelz EM, Guri AJ, Hontecillas R, Bassaganya-Riera J. 2010. Conjugated linoleic acid ameliorates inflammation-induced colorectal cancer in mice through activation of PPARγ. J. Nutr. 140: 515-521. https://doi.org/10.3945/jn.109.115642
- Zhang M, Sun K, Wu Y, Yang Y, Tso P, Wu Z. 2017. Interactions between intestinal microbiota and host immune response in inflammatory bowel disease. Front. Immunl. 8: 942. https://doi.org/10.3389/fimmu.2017.00942
- Ip WE, Hoshi N, Shouval DS, Snapper S, Medzhitov R. 2017. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356: 513-519. https://doi.org/10.1126/science.aal3535
- Lindemans CA, Calafiore M, Mertelsmann AM, O'connor MH, Dudakov JA, Jenq RR, et al. 2015. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 528: 560-564. https://doi.org/10.1038/nature16460
- Hoberg JE, Popko AE, Ramsey CS, Mayo MW. 2006. IκB kinase α-mediated derepression of SMRT potentiates acetylation of RelA/p65 by p300. Mol. Cell. Biol. 26: 457-471. https://doi.org/10.1128/MCB.26.2.457-471.2006
- Al-Ashy R, Chakroun I, El-Sabban ME, Homaidan FR. 2006. The role of NF-kappaB in mediating the anti-inflammatory effects of IL-10 in intestinal epithelial cells. Cytokine 36: 1-8. https://doi.org/10.1016/j.cyto.2006.10.003
- Lightfoot YL, Selle K, Yang T, Goh YJ, Sahay B, Zadeh M, et al. 2015. SIGNR3‐dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis. EMBO J. 34: 881-895. https://doi.org/10.15252/embj.201490296
- Yoda K, Miyazawa K, Hosoda M, Hiramatsu M, Yan F, He F. 2014. Lactobacillus GG-fermented milk prevents DSS-induced colitis and regulates intestinal epithelial homeostasis through activation of epidermal growth factor receptor. Eur. J. Nutr. 53: 105-115. https://doi.org/10.1007/s00394-013-0506-x
- Bansal T, Alaniz RC, Wood TK, Jayaraman A. 2010. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc. Natl. Acad. Sci. USA 107: 228-233. https://doi.org/10.1073/pnas.0906112107
- Corr SC, Li Y, Riedel CU, O'Toole PW, Hill C, Gahan CG. 2007. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc. Natl. Acad. Sci. USA 104: 7617-7621. https://doi.org/10.1073/pnas.0700440104
- Thirabunyanon M, Hongwittayakorn P. 2013. 2013. Potential probiotic lactic acid bacteria of human origin induce antiproliferation of colon cancer cells via synergic actions in adhesion to cancer cells and short-chain fatty acid bioproduction. Appl. Biochem. Biotechnol. 169: 511-525. https://doi.org/10.1007/s12010-012-9995-y
- Feng J, Liu P, Yang X, Zhao X. 2015. Screening of immunomodulatory and adhesive Lactobacillus with antagonistic activities against Salmonella from fermented vegetables. World. J. Microb. Biotechnol. 31: 1947-1954. https://doi.org/10.1007/s11274-015-1939-6
- Nagata Y, Hashiguchi K, Kamimura Y, Yoshida M, Gomyo T. 2009. The gastrointestinal transit tolerance of Lactobacillus plantarum strain No. 14 depended on the carbon source. Biosci. Biotechnol. Biochnol. 73: 2650-2655. https://doi.org/10.1271/bbb.90498
- Peng M, Tabashpengsum Z, Patel P, Bernhardt C, Biswas D. 2018. Linoleic acids overproducing Lactobacillus casei limits growth, survival, and virulence of Salmonella Typhimurium and enterohaemorrhagic Escherichia coli. Front. Microbiol. 9: 2663. https://doi.org/10.3389/fmicb.2018.02663
Cited by
- Evaluation of the Effects of Different Bacteroides vulgatus Strains against DSS-Induced Colitis vol.2021, 2021, https://doi.org/10.1155/2021/9117805
- Evidence from comparative genomic analyses indicating that Lactobacillus-mediated irritable bowel syndrome alleviation is mediated by conjugated linoleic acid synthesis vol.12, pp.3, 2021, https://doi.org/10.1039/d0fo02616f