DOI QR코드

DOI QR Code

Volatile Metabolic Markers for Monitoring Pectobacterium carotovorum subsp. carotovorum Using Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry

  • Yang, Ji-Su (Hygienic Safety and Analysis Center, World Institute of Kimchi) ;
  • Lee, Hae-Won (Hygienic Safety and Analysis Center, World Institute of Kimchi) ;
  • Song, Hyeyeon (Hygienic Safety and Analysis Center, World Institute of Kimchi) ;
  • Ha, Ji-Hyoung (Hygienic Safety and Analysis Center, World Institute of Kimchi)
  • Received : 2020.09.16
  • Accepted : 2020.11.11
  • Published : 2021.01.28

Abstract

Identifying the extracellular metabolites of microorganisms in fresh vegetables is industrially useful for assessing the quality of processed foods. Pectobacterium carotovorum subsp. carotovorum (PCC) is a plant pathogenic bacterium that causes soft rot disease in cabbages. This microbial species in plant tissues can emit specific volatile molecules with odors that are characteristic of the host cell tissues and PCC species. In this study, we used headspace solid-phase microextraction followed by gas chromatography coupled with mass spectrometry (HS-SPME-GC-MS) to identify volatile compounds (VCs) in PCC-inoculated cabbage at different storage temperatures. HS-SPME-GC-MS allowed for recognition of extracellular metabolites in PCC-infected cabbages by identifying specific volatile metabolic markers. We identified 4-ethyl-5-methylthiazole and 3-butenyl isothiocyanate as markers of fresh cabbages, whereas 2,3-butanediol and ethyl acetate were identified as markers of soft rot in PCC-infected cabbages. These analytical results demonstrate a suitable approach for establishing non-destructive plant pathogen-diagnosis techniques as alternatives to standard methods, within the framework of developing rapid and efficient analytical techniques for monitoring plant-borne bacterial pathogens. Moreover, our techniques could have promising applications in managing the freshness and quality control of cabbages.

Keywords

References

  1. Vivaldo G, Masi E, Taiti C, Caldarelli G, Mancuso S. 2017. The network of plants volatile organic compounds. Sci. Rep. 7: 11050. https://doi.org/10.1038/s41598-017-10975-x
  2. Morath SU, Hung R, Bennett JW. 2012. Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol. Rev. 26: 73-83. https://doi.org/10.1016/j.fbr.2012.07.001
  3. Strobel G. 2011. Muscodor species-endophytes with biological promise. Phytochem. Rev. 10: 165-172. https://doi.org/10.1007/s11101-010-9163-3
  4. Li Q, Ning P, Zheng L, Huang J, Li G, Hsiang T. 2012. Effects of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit. Biol. Control. 61: 113-120. https://doi.org/10.1016/j.biocontrol.2011.10.014
  5. Zheng M, Shi J, Shi J, Wang Q, Li Y. 2013. Antimicrobial effects of volatiles produced by two antagonistic Bacillus strains on the anthracnose pathogen in postharvest mangos. Biol. Control. 65: 200-206. https://doi.org/10.1016/j.biocontrol.2013.02.004
  6. Lui L, Vikram A, Hamzehzarghani H, Kushalappa AC. 2005. Discrimination of three fungal diseases of potato tubers based on volatile metabolic profiles developed using GC/MS. Potato Res. 48: 85-96. https://doi.org/10.1007/BF02733684
  7. Laothawornkitkul J, Jansen RMC, Smid HM, Bouwmeester HJ, Muller J, van Bruggen AHC. 2010. Volatile organic compounds as a diagnostic marker of late blight infected potato plants: a pilot study. Crop Prot. 29: 872-878. https://doi.org/10.1016/j.cropro.2010.03.003
  8. Toth IK, Bell KS, Holeva MC, Birch PR. 2003. Soft rot Erwiniae: from genes to genomes. Mol. Plant Pathol. 4: 17-30. https://doi.org/10.1046/j.1364-3703.2003.00149.x
  9. Par R. Davidsson, Tarja Kariola, Outi Niemi, Tapio Palva. 2013. Pathogenicity of and plant immunity to soft rot pectobacteria. Front. Plant Sci. 4: 191. https://doi.org/10.3389/fpls.2013.00191
  10. Blasioli S, Biondi E, Samudrala D, Spinelli F, Cellini A, Bertaccini A, 2014. Identification of volatile markers in potato brown rot and ring rot by combined GC-MS and PTR-MS techniques: study on in vitro and in vivo samples. J. Agric. Food Chem. 62: 337-347. https://doi.org/10.1021/jf403436t
  11. Turner AP, Magan N. 2004. Electronic noses and disease diagnostics. Nat. Rev. Microbiol. 2: 161-166. https://doi.org/10.1038/nrmicro823
  12. Li C, Schmidt NE, Gitaitis R. 2011. Detection of onion postharvest diseases by analyses of headspace volatiles using a gas sensor array and GC-MS. LWT Food Sci. Technol. 44: 1019-1025. https://doi.org/10.1016/j.lwt.2010.11.036
  13. Rutolo MF, Iliescu D, Clarkson JP, Covington JA. 2016. Early identification of potato storage disease using an array of metal-oxide based gas sensors. Postharvest Biol. Technol. 116: 50-58. https://doi.org/10.1016/j.postharvbio.2015.12.028
  14. Concina I, Falasconi M, Gobbi E, Bianchi F, Musci M, Mattarozzi M, et al. 2009. Early detection of microbial contamination in processed tomatoes by electronic nose. Food Control. 20: 873-880. https://doi.org/10.1016/j.foodcont.2008.11.006
  15. Balasubramanian S, Panigrahi S, Kottapalli B, Wolf-Hall CE. 2007. Evaluation of an artificial olfactory system for grain quality discrimination. LWT Food Sci. Technol. 40: 1815-1825. https://doi.org/10.1016/j.lwt.2006.12.016
  16. Cecchi L, Ieri F, Vignolini P, Mulinacci N, Romani A. 2020. Characterization of volatile and flavonoid composition of different cuts of dried onion (Allium cepa L.) by HS-SPME-GC-MS, HS-SPME-GC×GC-TOF and HPLC-DAD. Molecules 25: 408. https://doi.org/10.3390/molecules25020408
  17. Kailemia MJ, Park M, Kaplan DA, Venot A, Boons GJ, Li L, et al. 2014. High-field asymmetric-waveform ion mobility spectrometry and electron detachment dissociation of isobaric mixtures of glycosaminoglycans. J. Am. Soc. Mass Spectrom. 25: 258-268. https://doi.org/10.1007/s13361-013-0771-1
  18. Arthur CL, Pawliszyn J. 1990. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 62: 2145-2148. https://doi.org/10.1021/ac00218a019
  19. Marsili RT. 1999. SPME- MS- MVA as an electronic nose for the study of off-flavors in milk. J. Agric. Food Chem. 47: 648-654. https://doi.org/10.1021/jf9807925
  20. Vas G, Vekey K. 2004. Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. J. Mass Spectrom. 39: 233-254. https://doi.org/10.1002/jms.606
  21. Hwang YS, Lee HW, Chang JY, Seo HY. 2018. Characterization of Kimchi flavor with preconcentration by headspace solid-phase microextraction and stir bar sorptive extraction and analysis by gas chromatography-mass spectrometry. Anal. Lett. 52: 1247-1257. https://doi.org/10.1080/00032719.2018.1530256
  22. Portier P , Pedron J , Taghouti1 G, Fischer-Le SM, Caullireau E , Bertrand C, et al. 2019. Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants. Int. J. Syst. Evol. Microbiol. 69: 3207-3216. https://doi.org/10.1099/ijsem.0.003611
  23. Jeong SG, Lee JY, Yoon SR, Moon EW, Ha JH. 2019. A quantitative PCR based method using propidium monoazide for specific and sensitive detection of Pectobacterium carotovorum ssp. carotovorum in kimchi cabbage (Brassica rapa L. subsp. pekinensis). LWT 113: 108327. https://doi.org/10.1016/j.lwt.2019.108327
  24. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. 2018. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 46: W486-W494. https://doi.org/10.1093/nar/gky310
  25. Bhat KA, Masoodi SD, Bhat NA, Ahmad M, Zargar MY, Mir SA, et al. 2010. Studies on the effect of temperature on the development of soft rot of cabbage (Brassica oleracea var. capitata) caused by Erwiniacarotovora sub sp. Carotovora. J. Phytol. 2: 64-67.
  26. Agrios GN. 2005. Bacterial soft rots, pp. 656. In S. Dieg (Ed.), Plant Pathology, 5th Ed. Academic press, London.
  27. Smadja B, Latour X, Trigui S, Burini JF, Chevalier S, Orange N. 2004. Thermodependence of growth and enzymatic activities implicated in pathogenicity of two Erwinia carotovora subspecies (Pectobacterium spp.). Can. J. Microbiol. 50: 19-27. https://doi.org/10.1139/w03-099
  28. Perombelon MCM, Salmond GPC. 1995. Bacterial soft rots, pp. 1-20. In Singh US, Singh, Singh RP, Kohmoto K (eds.), Pathogenesis and host specificity in plant disease. Vol. I. Pergamon Press Ltd., Oxford, UK.
  29. Molina JJ, Harrison MD. 1977. The role of Erwinia carotovora in the epidemiology of potato blackleg. I. Relationship of E. carotovora var. carotovora and E. carotovora var. atrospetica to potato blackleg in Colorado. Am. Potato J. 54: 587-591. https://doi.org/10.1007/BF02855286
  30. Heikinheimo R, Flego D, Pirhonen M, Karlsson M-B, Eriksson A, Mae A, et al. 1995. Characterization of a novel pectate lyase from Erwinia carotovora subsp. carotovora. Mol. Plant-Microbe Interact. 8: 207-217. https://doi.org/10.1094/MPMI-8-0207
  31. Chen T, Cao Y, Zhang Y, Liu J, Bao Y, Wang C, et al. 2013. Random forest in clinical metabolomics for phenotypic discrimination and biomarker selection. Evid. Based Complement. Alternat. Med. 2013: 298183.
  32. Li X, Xu Z, Lu X, Yang X, Yin P, Kong H, et al. 2009. Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics: biomarker discovery for diabetes mellitus. Anal. Chim. Acta 633: 257-262. https://doi.org/10.1016/j.aca.2008.11.058
  33. Effantin G, Rivasseau C, Gromova M, Bligny R, Hugouvieux-Cotte-Pattat N. 2011. Massive production of butanediol during plant infection by phytopathogenic bacteria of the genera Dickeya and Pectobacterium. Mol. Microbiol. 82: 988-997. https://doi.org/10.1111/j.1365-2958.2011.07881.x
  34. Mateo JJ, Jimenez M, Pastor A, Huerta T. 2001. Yeast starter cultures affecting wine fermentation and volatiles. Food Res. Int. 34: 307-314. https://doi.org/10.1016/S0963-9969(00)00168-X
  35. Radvanyi D, Gere A, Jokai Z, Fodor P. 2015. Rapid evaluation technique to differentiate mushroom disease-related moulds by detecting microbial volatile organic compounds using HS-SPME-GC-MS. Anal. Bioanal. Chem. 407: 537-545. https://doi.org/10.1007/s00216-014-8302-x
  36. Marquez-Villavicencio MDP, Weber B, Witherell RA, Willis DK, Charkowski AO. 2011. The 3-hydroxy-2-butanone pathway is required for Pectobacterium carotovorum pathogenesis. PLoS One 6: e22974. https://doi.org/10.1371/journal.pone.0022974
  37. Kanchiswamy CN, Malnoy M, Maffei ME. 2015. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front. Plant Sci. 6: 151. https://doi.org/10.3389/fpls.2015.00151
  38. Bauer K, Garbe D, Surburg H. 2001. Common fragrance and flavor materials preparation, properties and uses, 4th Ed. Weinheim, Germany, Wiley-VCH.
  39. Levey DJ. 2004. The evolutionary ecology of ethanol production and alcoholism. Integr. Comp. Biol. 44: 284-289. https://doi.org/10.1093/icb/44.4.284