참고문헌
- Duerkop BA, Vaishnava S, Hooper LV. 2009. Immune responses to the microbiota at the intestinal mucosal surface. Immunity 31: 368-376. https://doi.org/10.1016/j.immuni.2009.08.009
- Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. 2012. Host-gut microbiota metabolic interactions. Science 336: 1262-1267. https://doi.org/10.1126/science.1223813
- Caracciolo B, Xu W, Collins S, Fratiglioni L. 2014. Cognitive decline, dietary factors and gut-brain interactions. Mech. Ageing Dev. 136: 59-69. https://doi.org/10.1016/j.mad.2013.11.011
- Noble EE, Hsu TM, Kanoski SE. 2017. Gut to brain dysbiosis: Mechanisms linking western diet consumption, the microbiome, and cognitive impairment. Front. Behav. Neurosci. 11: 9. https://doi.org/10.3389/fnbeh.2017.00009
- Jia S, Lu Z, Gao Z, An J, Wu X, Li X, et al. 2016. Chitosan oligosaccharides alleviate cognitive deficits in an amyloid-β1-42-induced rat model of Alzheimer's disease. Int. J. Biol. Macromol. 83: 416-425. https://doi.org/10.1016/j.ijbiomac.2015.11.011
- Yen CH, Wang CH, Wu WT, Chen HL. 2016. Fructo-oligosaccharide improved brain β-amyloid, β-secretase, cognitive function, and plasma antioxidant levels in D-galactose-treated Balb/cJ mice. Nutr. Neurosci. 20: 228-237. https://doi.org/10.1080/1028415X.2015.1110952
- Singh TP, Kaur G, Malik RK, Schillinger U, Guigas C, Kapila S. 2012. Characterization of intestinal Lactobacillus reuteri strains as potential probiotics. Probiotics Antimicrob. Proteins 4: 47-58. https://doi.org/10.1007/s12602-012-9090-2
- Cryan JF, O'mahony SM. 2011. The microbiome-gut-brain axis: From bowel to behavior. Neurogastroenterol. Motil. 23: 187-192. https://doi.org/10.1111/j.1365-2982.2010.01664.x
- Lee YJ, Choi DY, Yun YP, Han SB, Oh KW, Hong JT. 2013. Epigallocatechin-3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties. J. Nutr. Biochem. 24: 298-310. https://doi.org/10.1016/j.jnutbio.2012.06.011
- Lim H, Kang S, Park M, Yoon J, Han B, Choi S, et al. 2006. Anti-oxidative and nitric oxide production inhibitory activities of phenolic compounds from the fruits of Actinidia argute. Nat. Prod. Sci. 12: 221-225.
- Ha JS, Jin DE, Park SK, Park CH, Seung TW, Bae DW, et al. 2015. Antiamnesic effect of Actinidia arguta extract intake in a mouse model of TMT-induced learning and memory dysfunction. Evid.-Based Complement. Altern. Med. 2015: 876484.
- Kim HY, Hwang KW, Park SY. 2014. Extracts of Actinidia arguta stems inhibited LPS-induced inflammatory responses through nuclear factor-κB pathway in Raw 264.7 cells. Nutr. Res. 34: 1008-1016. https://doi.org/10.1016/j.nutres.2014.08.019
- Lee AY, Kang MJ, Choe E, Kim JI. 2015. Hypoglycemic and antioxidant effects of Daraesoon (Actinidia arguta shoot) in animal models of diabetes mellitus. Nutr. Res. Pract. 9: 262-267. https://doi.org/10.4162/nrp.2015.9.3.262
- Qiao Y, Sun J, Xia S, Li L, Li Y, Wang P, et al. 2015. Effects of different Lactobacillus reuteri on inflammatory and fat storage in high-fat diet-induced obesity mice model. J. Funct. Food 14: 424-434. https://doi.org/10.1016/j.jff.2015.02.013
- Reza MA, Hossain MA, Lee SJ, Kim JC, Park SC. 2016. In vitro prebiotic effects and quantitative analysis of Bulnesia sarmienti extract. J. Food Drug Anal. 24: 822-830. https://doi.org/10.1016/j.jfda.2016.03.015
- He W, Liu X, Xu H, Gong Y, Yuan F, Gao Y. 2010. On-line HPLC-ABTS screening and HPLC-DAD-MS/MS identification of free radical scavengers in Gardenia (Gardenia jasminoides Ellis) fruit extracts. Food Chem. 123: 521-528. https://doi.org/10.1016/j.foodchem.2010.04.030
- Hvattum E. 2010. Determination of phenolic compounds in rose hip (Rosa canina) using liquid chromatography coupled to electrospray ionisation tandem mass spectrometry and diode-array detection. Rapid Commun. Mass Spectrom. 16: 655-662. https://doi.org/10.1002/rcm.622
- Khallouki F, Voggel J, Breuer A, Klika KD, Ulrich CM, Owen RW. 2017. Comparison of the major polyphenols in mature argan fruits from two regions of Morocco. Food Chem. 221: 1034-1040. https://doi.org/10.1016/j.foodchem.2016.11.058
- Ye M, Yan Y, Guo DA. 2005. Characterization of phenolic compounds in the Chinese herbal drug Tu-Si-Zi by liquid chromatography coupled to electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 19: 1469-1484. https://doi.org/10.1002/rcm.1944
- Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. 2011. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 108: 16050-16055. https://doi.org/10.1073/pnas.1102999108
- Savignac HM, Kiely B, Dinan TG, Cryan JF. 2014. Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol. Motil. 26: 1615-1627. https://doi.org/10.1111/nmo.12427
- Gareau MG, Jury J, MacQueen G, Sherman PM, Perdue MH. 2007. Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut 56: 1522-1528. https://doi.org/10.1136/gut.2006.117176
- Parkar SG, Simmons L, Herath TD, Phipps JE, Trower TM, Hedderley DI, et al. 2017. Evaluation of the prebiotic potential of five kiwifruit cultivars after simulated gastrointestinal digestion and fermentation with human faecal bacteria. Int. J. Food Sci. Technol. 53: 1203-1210. https://doi.org/10.1111/ijfs.13697
- Duary RK, Batish VK, Grover S. 2014. Immunomodulatory activity of two potential probiotic strains in LPS-stimulated HT-29 cells. Genes Nutr. 9: 398. https://doi.org/10.1007/s12263-014-0398-2
- Kanauchi O, Serizawa I, Araki Y, Suzuki A, Andoh A, Fujiyama Y, et al. 2003. Germinated barley foodstuff, a prebiotic product, ameliorates inflammation of colitis through modulation of the enteric environment. J. Gastroenterol. 38: 134-141. https://doi.org/10.1007/s005350300022
- Saulnier DM, Ringel Y, Heyman MB, Foster JA, Bercik P, Shulman RJ, et al. 2013. The intestinal microbiome, probiotics and prebiotics in neurogastroenterology. Gut Microbes 4: 17-27. https://doi.org/10.4161/gmic.22973
- Patil CS, Singh VP, Satyanarayan PSV, Jain NK, Singh A, Kulkarni SK. 2003. Protective effect of flavonoids against aging-and lipopolysaccharide-induced cognitive impairment in mice. Pharmacology 69: 59-67. https://doi.org/10.1159/000072357
- Padurariu M, Ciobica A, Hritcu L, Stoica B, Bild W, Stefanescu C. 2010. Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer's disease. Neurosci. Lett. 469: 6-10. https://doi.org/10.1016/j.neulet.2009.11.033
- Hsia CH, Wang CH, Kuo YW, Ho YJ, Chen HL. 2012. Fructo-oligosaccharide systemically diminished D-galactose-induced oxidative molecule damages in BALB/cJ mice. Br. J. Nutr. 107: 1787-1792. https://doi.org/10.1017/S0007114511005150
- Tyagi E, Agrawal R, Nath C, Shukla R. 2008, Influence of LPS-induced neuroinflammation on acetylcholinesterase activity in rat brain. J. Neuroimmunol. 205: 51-56. https://doi.org/10.1016/j.jneuroim.2008.08.015
- Lim YJ, Oh CS, Park YD, Eom SH, Kim DO, Kim UJ, et al. 2014. Physiological components of kiwifruits with in vitro antioxidant and acetylcholinesterase inhibitory activities. Food Sci. Biotechnol. 23: 943-949. https://doi.org/10.1007/s10068-014-0127-z
- Goujon E, Parnet P, Laye S, Combe C, Dantzer R. 1996. Adrenalectomy enhances pro-inflammatory cytokines gene expression, in the spleen, pituitary and brain of mice in response to lipopolysaccharide. Mol. Brain Res. 36: 53-62. https://doi.org/10.1016/0169-328X(95)00242-K
- Roth J, De Souza GEP. 2001. Fever induction pathways: Evidence from responses to systemic or local cytokine formation. Braz. J. Med. Biol. Res. 34: 301-314. https://doi.org/10.1590/s0100-879x2001000300003
- Banks WA. 2005. Blood-brain barrier transport of cytokines: A mechanism for neuropathology. Curr. Pharm. Design 11: 973-984. https://doi.org/10.2174/1381612053381684
- Savignac HM, Couch Y, Stratford M, Bannerman DM, Tzortzis G, Anthony DC, et al. 2016. Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-β levels in male mice. Brain Behav. Immun. 52: 120-131. https://doi.org/10.1016/j.bbi.2015.10.007
- Shokryazdan P, Jahromi MF, Navidshad B, Liang JB. 2017. Effects of prebiotics on immune system and cytokine expression. Med. Microbiol. Immunol. 206: 1-9. https://doi.org/10.1007/s00430-016-0481-y
- Qiao Y, Ruan Y, Xiong C, Xu Q, Wei P, Ma P, et al. 2010. Chitosan oligosaccharides suppressant LPS binding to TLR4/MD-2 receptor complex. Carbohydr. Polym. 82: 405-411. https://doi.org/10.1016/j.carbpol.2010.04.079
- Kim HP, Son KH, Chang HW, Kang SS. 2004. Anti-inflammatory plant flavonoids and cellular action mechanisms. J. Pharmacol. Sci. 96: 229-245. https://doi.org/10.1254/jphs.CRJ04003X
- Hou Y, Aboukhatwa MA, Lei DL, Manaye K, Khan I, Luo Y. 2010. Anti-depressant natural flavonols modulate BDNF and beta amyloid in neurons and hippocampus of double TgAD mice. Neuropharmacology 58: 911-920. https://doi.org/10.1016/j.neuropharm.2009.11.002
- Sergent T, Piront N, Meurice J, Toussaint O, Schneider YJ. 2010. Anti-inflammatory effects of dietary phenolic compounds in an in vitro model of inflamed human intestinal epithelium. Chem. Biol. Interact. 188: 659-667. https://doi.org/10.1016/j.cbi.2010.08.007
- Scalbert A, Morand C, Manach C, Remesy C. 2002. Absorption and metabolism of polyphenols in the gut and impact on health. Biomed. Pharmacother. 56: 276-282. https://doi.org/10.1016/S0753-3322(02)00205-6
- Wang D, Ho L, Faith J, Ono K, Janle EM, Lachcik PJ, et al. 2015. Role of intestinal microbiota in the generation of polyphenol-derived phenolic acid mediated attenuation of Alzheimer's disease β-amyloid oligomerization. Mol. Nutr. Food Res. 59: 1025-1040. https://doi.org/10.1002/mnfr.201400544
- Etxeberria U, Fernandez-Quintela A, Milagro FI, Aguirre L, Martinez JA, Portillo MP. 2013. Impact of polyphenols and polyphenolrich dietary sources on gut microbiota composition. J. Agric. Food Chem. 61: 9517-9533. https://doi.org/10.1021/jf402506c
- China R, Mukherjee S, Sen S, Bose S, Datta S, Koley H, et al. 2012. Antimicrobial activity of Sesbania grandiflora flower polyphenol extracts on some pathogenic bacteria and growth stimulatory effect on the probiotic organism Lactobacillus acidophilus. Microbiol. Res. 167: 500-506. https://doi.org/10.1016/j.micres.2012.04.003
- Comalada M, Camuesco D, Sierra S, Ballester I, Xaus J, Galvez J, et al. 2005. In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-κB pathway. Eur. J. Immunol. 35: 584-592. https://doi.org/10.1002/eji.200425778