DOI QR코드

DOI QR Code

Hepatitis B Virus DNA Polymerase Displays an Anti-Apoptotic Effect by Interacting with Elongation Factor-1 Alpha-2 in Hepatoma Cells

  • Niu, Xianli (Department of Biochemistry and Molecular Biology, Zunyi Medical University) ;
  • Nong, Shirong (Key Laboratory of Genetic Engineering and Medicine, Key Laboratory of Viral Biology, Jinan University) ;
  • Gong, Junyuan (Key Laboratory of Genetic Engineering and Medicine, Key Laboratory of Viral Biology, Jinan University) ;
  • Zhang, Xin (Key Laboratory of Genetic Engineering and Medicine, Key Laboratory of Viral Biology, Jinan University) ;
  • Tang, Hui (Key Laboratory of Genetic Engineering and Medicine, Key Laboratory of Viral Biology, Jinan University) ;
  • Zhou, Tianhong (Key Laboratory of Genetic Engineering and Medicine, Key Laboratory of Viral Biology, Jinan University) ;
  • Li, Wei (Key Laboratory of Genetic Engineering and Medicine, Key Laboratory of Viral Biology, Jinan University)
  • 투고 : 2020.02.20
  • 심사 : 2020.10.21
  • 발행 : 2021.01.28

초록

Hepatitis B virus (HBV) genome P-encoded protein HBV DNA polymerase (Pol) has long been known as a reverse transcriptase during HBV replication. In this study, we investigated the impact of HBV Pol on host cellular processes, mainly apoptosis, and the underlying mechanisms. We showed a marked reduction in apoptotic rates in the HBV Pol-expressed HepG2 cells compared to controls. Moreover, a series of assays, i.e., yeast two-hybrid, GST pull-down, co-immunoprecipitation, and confocal laser scanning microscopy, identified the host factor eEF1A2 to be associated with HBV Pol. Furthermore, knockdown of eEF1A2 gene by siRNA abrogated the HBV Pol-mediated anti-apoptotic effect with apoptosis induced by endoplasmatic reticulum (ER) stress-inducer thapsigargin (TG), thus suggesting that the host factor eEF1A2 is essential for HBV Pol's anti-apoptosis properties. Our findings have revealed a novel role for HBV Pol in its modulation of apoptosis through integrating with eEF1A2.

키워드

참고문헌

  1. Shepard CW, Simard EP, Finelli L, Fiore AE, Bell BP. 2006. Hepatitis B virus infection: epidemiology and vaccination. Epidemiol. Rev. 28: 112-125. https://doi.org/10.1093/epirev/mxj009
  2. Roy KM, McMenamin J. 2000. Hepatocellular carcinoma associated with chronic hepatitis B and C: pathogenesis, treatment and prevention. Rev. Med. Microbiol. 11: 171-178. https://doi.org/10.1097/00013542-200011030-00007
  3. Liang TJ. 2009. Hepatitis B: the virus and disease. Hepatology 49: S13-21. https://doi.org/10.1002/hep.22881
  4. El-Serag HB. 2011. Hepatocellular carcinoma. N. Engl. J. Med. 365: 1118-1127. https://doi.org/10.1056/NEJMra1001683
  5. Lai C. 2001. Natural history of hepatitis B. Infection 30: 7-12. https://doi.org/10.1007/s15010-001-1197-4
  6. Li W, Miao X, Qi Z, Zeng W, Liang J, Liang Z. 2010. Hepatitis B virus X protein upregulates HSP90alpha expression via activation of c-Myc in human hepatocarcinoma cell line, HepG2. Virol. J. 7: 45. https://doi.org/10.1186/1743-422X-7-45
  7. Brautigam CA, Steitz TA. 1998. Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. Curr. Opin. Struct. Biol. 8: 54-63. https://doi.org/10.1016/S0959-440X(98)80010-9
  8. Hu J, Flores D, Toft D, Wang X, Nguyen D. 2004. Requirement of heat shock protein 90 for human hepatitis B virus reverse transcriptase function. J. Virol. 78: 13122-13131. https://doi.org/10.1128/JVI.78.23.13122-13131.2004
  9. Lund A, Knudsen SM, Vissing H, Clark B, Tommerup N. 1996. Assignment of human elongation factor 1alpha genes: EEF1A maps to chromosome 6q14 and EEF1A2 to 20q13.3. Genomics 36: 359-361. https://doi.org/10.1006/geno.1996.0475
  10. Sanges C, Scheuermann C, Zahedi RP, Sickmann A, Lamberti A, Migliaccio N, et al. 2012. Raf kinases mediate the phosphorylation of eukaryotic translation elongation factor 1A and regulate its stability in eukaryotic cells. Cell Death Dis. 3: e276. https://doi.org/10.1038/cddis.2012.16
  11. Migliaccio N, Sanges C, Ruggiero I, Martucci NM, Rippa E, Arcari P, et al. 2013. Raf kinases in signal transduction and interaction with translation machinery. Biomol. Concepts 4: 391-399. https://doi.org/10.1515/bmc-2013-0003
  12. Hwang YH, Choi JY, Kim S, Chung ES, Kim T, Koh SS, et al. 2004. Over-expression of c-raf-1 proto-oncogene in liver cirrhosis and hepatocellular carcinoma. Hepatol. Res. 29: 113-121. https://doi.org/10.1016/j.hepres.2004.02.009
  13. Fan Y, Bergmann A. 2008. Apoptosis-induced compensatory proliferation. The Cell is dead. Long live the Cell! Trends Cell Biol. 18: 467-473. https://doi.org/10.1016/j.tcb.2008.08.001
  14. Adams JM, Cory S. 2007. Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr. Opin. Immunol. 19: 488-496. https://doi.org/10.1016/j.coi.2007.05.004
  15. Veeramah KR, Johnstone L, Karafet TM, Wolf D, Sprissler R, Salogiannis J, et al. 2013. Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. Epilepsia 54: 1270-1281. https://doi.org/10.1111/epi.12201
  16. Miura P, Coriati A, Belanger G, De Repentigny Y, Lee J, Kothary R, et al. 2010. The utrophin A 5'-UTR drives cap-independent translation exclusively in skeletal muscles of transgenic mice and interacts with eEF1A2. Hum. Mol. Genet. 19: 1211-1220. https://doi.org/10.1093/hmg/ddp591
  17. Lamberti A, Caraglia M, Longo O, Marra M, Abbruzzese A, Arcari P. 2004. The translation elongation factor 1A in tumorigenesis, signal transduction and apoptosis: Review article. Amino Acids 26: 443-448. https://doi.org/10.1007/s00726-004-0088-2
  18. Gandin V, Gutierrez GJ, Brill LM, Varsano T, Feng Y, Aza-Blanc P, et al. 2013. Degradation of newly synthesized polypeptides by ribosome-associated RACK1/c-Jun N-terminal kinase/eukaryotic elongation factor 1A2 complex. Mol. Cell Biol. 33: 2510-2526. https://doi.org/10.1128/MCB.01362-12
  19. Grassi G, Scaggiante B, Farra R, Dapas B, Agostini F, Baiz D, et al. 2007. The expression levels of the translational factors eEF1A 1/2 correlate with cell growth but not apoptosis in hepatocellular carcinoma cell lines with different differentiation grade. Biochimie 89: 1544-1552. https://doi.org/10.1016/j.biochi.2007.07.007
  20. Schlaeger C, Longerich T, Schiller C, Bewerunge P, Mehrabi A, Toedt G, et al. 2008. Etiology-dependent molecular mechanisms in human hepatocarcinogenesis. Hepatology 47: 511-520. https://doi.org/10.1002/hep.22033
  21. Pellegrino R, Calvisi DF, Neumann O, Kolluru V, Wesely J, Chen X, et al. 2014. EEF1A2 inactivates p53 by way of PI3K/AKT/mTOR-dependent stabilization of MDM4 in hepatocellular carcinoma. Hepatology 59: 1886-1899. https://doi.org/10.1002/hep.26954
  22. Abbas W, Khan KA, Kumar A, Tripathy MK, Dichamp I, Keita M, et al. 2014. Blockade of BFA-mediated apoptosis in macrophages by the HIV-1 Nef protein. Cell Death Dis. 5: e1080. https://doi.org/10.1038/cddis.2014.16
  23. Chang R, Wang E. 2007. Mouse translation elongation factor eEF1A-2 interacts with Prdx-I to protect cells against apoptotic death induced by oxidative stress. J. Cell Biochem. 100: 267-278. https://doi.org/10.1002/jcb.20969
  24. Hanedi A, Burkitt MD, Duckworth CA, Dimaline R, Caamano JH, Pritchard DM. 2012. OC-019 Altered trail, CASPASE12, BAK and FAS-l expressions are associated with increased susceptibility to radiation induced intestinal epithelial apoptosis in NF-κ b1-null and NF-κ b2-null mice. Gut 61: A8-A9.
  25. Mehmet H. 2000. Caspases find a new place to hide. Nature 403: 29-30. https://doi.org/10.1038/47377
  26. Hayashi T, Saito A, Okuno S, Ferrand-Drake M, Chan PH. 2003. Induction of GRP78 by ischemic preconditioning reduces endoplasmic reticulum stress and prevents delayed neuronal cell death. J. Cereb. Blood Flow Metab. 23: 949-961. https://doi.org/10.1097/01.WCB.0000077641.41248.EA
  27. Meares GP, Zmijewska AA, Jope RS. 2008. HSP105 interacts with GRP78 and GSK3 and promotes ER stress-induced caspase-3 activation. Cell. Signal. 20: 347-358. https://doi.org/10.1016/j.cellsig.2007.10.032
  28. Rauschert N, Brandlein S, Holzinger E, Hensel F, Müller-Hermelink H-K, Vollmers HP. 2008. A new tumor-specific variant of GRP78 as target for antibody-based therapy. Lab. Invest. 88: 375-386. https://doi.org/10.1038/labinvest.2008.2
  29. Mcguckin MA, Eri RD, Das I, Lourie R, Florin TH. 2010. ER stress and the unfolded protein response in intestinal inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 298: G820-832. https://doi.org/10.1152/ajpgi.00063.2010
  30. Tian Y, Hu Y, Wang Z, Chen K, Zhang L, Wang L, et al. 2011. Hepatitis B virus regulates Raf1 expression in HepG2.2.15 cells by enhancing its promoter activity. Arch. Virol. 156: 869-874. https://doi.org/10.1007/s00705-010-0901-z
  31. Caraglia, M. 2006. Targeting Raf-kinase: molecular rationales and translational issues. Ann. Oncol. 17: vii124-vii127. https://doi.org/10.1093/annonc/mdl964
  32. Nguyen MH, Trinh HN, Garcia RT, Nguyen LH, Vutien P, Ha NB, et al. 2008. S2075 Prevalence of HBV DNA polymerase (B-DNA Pol) mutations in 345 patients with treatment-Na?Ve chronic hepatitis B (CHB). Gastroenterology 134: Suppl 1. A-310.