DOI QR코드

DOI QR Code

인산염 농도에 따른 물성 변화로 발생하는 황색포도상구균 바이오필름 제거 현상

Phosphate Concentration Dependent Degradation of Biofilm in S. aureus Triggered by Physical Properties

  • 투고 : 2021.12.21
  • 심사 : 2021.12.29
  • 발행 : 2021.12.30

초록

본 연구는 인체 친화적인 소재로 균을 제거하는 기술을 만들기 위해서 진행하였다. 균총 상호 균형에 중요한 역할을 하는 황색포도상구균이 바이오필름을 생성시킬 때 다양한 농도의 인산염 투입시 나타나는 물성변화를 조사하였다. 원자현미경을 이용해서 인산염 5 mM 처리시 황색포도상구균 바이오필름의 크기와 경도가 통계적으로 유의차가 있게 최소값을 가짐을 관찰하였다. 염료 태깅법으로 흡광도를 관찰한 결과 인산염과 함께 성장한 전체 바이오필름의 농도도 감소한 것을 발견하였다. 이것이 카운터 이온으로서 작용하는 염에 의한 영향인지 확인하기 위하여 소금을 같은 조건에서 처리해보았는데 이때는 바이오필름의 농도 감소가 관찰되지 않았고 이를 통해 인산염이 특별한 생리적인 작용에 관여함을 알 수 있었다. 비행시간형 이차이온 질량분석기를 통해서 이온 검출량을 평가하여 바이오필름 구성성분을 분석한 결과 인산염을 투입하기 전과 후의 모든 바이오필름 외곽에서 세균막만 감지되었는데 특별히 인산염 5 mM에서 이 세균막의 농도가 가장 낮음을 확인하였다. 바이오필름 내부에 어떤 물성 변화가 일어났는지 관찰하기 위해서 시어 응력을 조절하는 유변기기로 바이오필름의 점탄성 특징을 측정을 하니 인산염 5 mM에서 바이오필름의 점도는 변화하지 않았으나 탄성률 감소가 일어난 것을 관찰하였다. 이것을 통해 인산염이 5 mM인 환경에서 균은 내부 탄성률 감소를 통해서 세균막을 탈피시키는 것을 알 수 있었다. 인산염 농도 5 mM에서 관찰되는 세균막 농도 감소는 균이 더 많은 성장을 하기 위해 다른 곳으로 이동하기 쉽게 하기 위해서 스스로 표면에서 탈착하는 것과 연관이 있음을 제시하였다. 마침내 인산염을 투입하면 균의 세균막 제거가 유도되어 결론적으로 황색포도상구균이 쉽게 제거될 수 있음을 밝혀내었다.

The objective of this study was to establish technology for removing bacteria with human- and eco-friendly material. Staphylococcus aureus as an important component for balanced equilibrium among microbiomes, was cultured under various concentrations of phosphate. Experimental observation relating to physical properties was performed in an addition of phosphate buffer. Statistically minimum value of size and hardness using atomic force microscope was observed on the matured biofilm at 5 mM concentration of phosphate. As a result of absorbance for the biofilm tagged with dye, concentration of biofilm was reduced with phophate, too. To identify whether this reduction by phosphate at the 5 mM is caused by counter ion or not, sodium chloride was treated to the biofilm under the same condition. To elucidate components of the biofilm counting analysis of the biofilm using time-of-flight secondary ion mass spectrometry was employed. The secondary ions from the biofilm revealed that alteration of physical properties is consistent to the change of extracellular polymeric substrate (EPS) for the biofilm. Viscoelastic characterization of the biofilm using a controlled shear stress rheometer, where internal change of physical properties could be detected, exhibited a static viscosity and a reduction of elastic modulus at the 5 mM concentration of phosphate. Accordingly, bacteria at the 5 mM concentration of phosphate are attributed to removing the EPS through a reduction of elastic modulus for bacteria. We suggest that the reduction of concentration of biofilm induces dispersion which assists to easily spread its dormitory. In conclusion, it is elucidated that an addition of phosphate causes removal of EPS, and that causes a function of antibiotic.

키워드

참고문헌

  1. B. W. Barry, Breaching the skin's barrier to drugs, Nature Biotechnol., 22, 165 (2004). https://doi.org/10.1038/nbt0204-165
  2. C. Iwata, N. Akimoto, T. Sato, Y. Morokuma, and A. Ito, Augmentation of lipogenesis by 15-deoxy-delta12, 14- prostaglandin J2 in hamster sebaceous glands: identification of cytochrome P-450-mediated 15-deoxy-delta12,14-prostaglandin J2 production, J. Invest. Dermatol., 125(5), 865 (2005). https://doi.org/10.1111/j.0022-202X.2005.23866.x
  3. S. Mukherjee, R. Mitra, A. Maitra, S. Gupta, S. Kumaran, A. Chakrabortty, and P. P. Majumder, Sebum and hydration levels in specific regions of human face significantly predict the nature and diversity of facial skin microbiome, Sci. Rep., 6, 36062 (2016). https://doi.org/10.1038/srep36062
  4. L. Ma, A. Guichard, Y. Cheng, J. Li, O. Qin, X. Wang, W. Liu, and Y. Tan, Sensitive scalp is associated with excessive sebum and perturbed microbiome, J. Cosmet. Dermatol., 18(3), 922 (2019). https://doi.org/10.1111/jocd.12736
  5. B. Siu-Yin, E. X. Ho, C. Chu, S. Ramasamy, M. Bigliardi-Qi, P. Florez de Sessions, and P. L. Bigliardi, Microbiome in the hair follicle of androgenetic alopecia patients, PLoS One, 14(5), e0216330 (2019). https://doi.org/10.1371/journal.pone.0216330
  6. E. Filaire, A. Dreux, C. Boutot, E. Ranouille, and J. Y. Berthon, Characteristics of healthy and androgenetic alopecia scalp microbiome: Effect of Lindera strychnifolia roots extract as a natural solution for its modulation, Int. J. Cosmet. Sci., 42(6), 615 (2020). https://doi.org/10.1111/ics.12657
  7. D. Pinto, E. Sorbellini, B. Marzani, M. Rucco, G. Giuliani, and F. Rinaldi, Scalp bacterial shift in Alopecia areata, PLoS One, 14(4), e0216330 (2019). https://doi.org/10.1371/journal.pone.0216330
  8. C. C. Zouboulis, Propionibacterium acnes and sebaceous lipogenesis: a love-hate relationship?, J. Invest. Dermatol., 129(9), 2093 (2009). https://doi.org/10.1038/jid.2009.190
  9. K. Iinuma, T. Sato, N. Akimoto, N. Noguchi, M. Sasatsu, S. Nishijima, I. Kurokawa, and A. Ito, Involvement of Propionibacterium acnes in the augmentation of lipogenesis in hamster sebaceous glands in vivo and in vitro, J. Invest. Dermatol., 129(9), 2113 (2009). https://doi.org/10.1038/jid.2009.46
  10. I. Kolodkin-Gal1, D. Romero, S. Cao, J. Clardy, R. Kolter, and R. Losick, d-Amino acids trigger biofilm disassembly, Science, 328(5978), 627 (2010). https://doi.org/10.1126/science.1188628
  11. P. Roy, S. Amdekar, A. Kumar, R. Singh, P. Sharma, and V. Singha, In vivo antioxidative property, antimicrobial and wound healing activity of flower extracts of Pyrostegia venusta (Ker Gawl) Miers, J. Ethnopharmacol., 140(1) 186 (2012). https://doi.org/10.1016/j.jep.2012.01.008
  12. J. H. Lim, Y. Jeong, S. H. Song, J. H. Ahn, J. R. Lee, and S. M. Lee, Penetration of an antimicrobial zinc-sugar alcohol complex into Streptococcus mutans biofilms, Sci. Rep., 8, 16154 (2018). https://doi.org/10.1038/s41598-018-34366-y
  13. M. Grillo-Puertas, J. M. Villegas, M. B. Rintoul, and V. A. Rapisarda, Polyphosphate degradation in stationary phase triggers biofilm formation via LuxS quorum sensing system in Escherichia coli, PLoS One, 7(11), e50368 (2012). https://doi.org/10.1371/journal.pone.0050368
  14. R. D. Monds, P. D. Newell, R. H. Gross, and G. A. O'Toole, Phosphate-dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0-1 biofilm formation by controlling secretion of the adhesin LapA, Mol. Microbiol., 63(3), 656 (2007). https://doi.org/10.1111/j.1365-2958.2006.05539.x
  15. R. Ghosh, S. Barman, and N. C. Mandal, Phosphate deficiency induced biofilm formation of Burkholderia on insoluble phosphate granules plays a pivotal role for maximum release of soluble phosphate, Sci. Rep., 9, 5477 (2019). https://doi.org/10.1038/s41598-019-41726-9
  16. T. Iwase, Y. Uehara, H. Shinji, A. Tajima, H. Seo, K. Takada, T. Agata, and Y. Mizunoe, Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization, Nature, 465, 346 (2010). https://doi.org/10.1038/nature09074
  17. G. J. M. Christensen, C. F. P. Scholz, J. Enghild, H. Rohde, M. Kilian, A. Thuermer, E. Brzuszkiewicz, H. B. Lomholt, and H. Brueggemann, Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis, BMC Genomics, 17, 152 (2016). https://doi.org/10.1186/s12864-016-2489-5
  18. W. Francuzik, K. Franke, R. R. Schumann, G. Heine, and M. Worm, Propionibacterium acnes abundance correlates inversely with Staphylococcus aureus: Data from atopic dermatitis skin microbiome, Acta Derm. Venereol., 98(5), 490 (2018). https://doi.org/10.2340/00015555-2896
  19. K. Nakase, H. Nakaminami, and Y. Takenaka, N. Hayashi, M. Kawashima, and N. Noguchi, Relationship between the severity of acne vulgaris and antimicrobial resistance of bacteria isolated from acne lesions in a hospital in Japan, J. Med. Microbiol., 63(Pt 5), 721 (2014). https://doi.org/10.1099/jmm.0.067611-0
  20. T. Simonart, M. Dramaix, and V. De Maertelaer, Efficacy of tetracyclines in the treatment of acne vulgaris: a review, Br. J. Dermatol., 158(2), 208 (2008). https://doi.org/10.1111/j.1365-2133.2007.08286.x
  21. A. C. Jahns, H. Eilers, and O. A. Alexeyev, Transcriptomic analysis of Propionibacterium acnes biofilms in vitro, Anaerobe, 42, 111 (2016). https://doi.org/10.1016/j.anaerobe.2016.10.001
  22. Y. Fu, Y. Zu, L. Chen, T. Efferth, H. Liang, Z. Liu, and W. Liu, Investigation of antibacterial activity of rosemary essential oil against Propionibacterium acnes with atomic force microscopy, Planta Med., 73(12), 1275 (2007). https://doi.org/10.1055/s-2007-981614
  23. T. Gan, X. Gong, H. Schonherr, and G. Zhang, Microrheology of growing Escherichia coli biofilms investigated by using magnetic force modulation atomic force microscopy, Biointerphases, 11(4), 041005 (2016). https://doi.org/10.1116/1.4968809
  24. J. W. Costerton, P. S. Stewart, and E. P. Greenberg, Bacterial biofilms: a common cause of persistent infections, Science, 284(5418), 1318 (1999). https://doi.org/10.1126/science.284.5418.1318
  25. P. S. Stewart and J. William, Antibiotic resistance of bacteria in biofilms, Lancet, 358(9276), 135 (2001). https://doi.org/10.1016/S0140-6736(01)05321-1
  26. S. V. Nuffel, M. Quatredeniers, A. Pirkl, J. Zakel, J. P. Le Caer, N. Elie, Q. P. Vanbellingen, S. J. Dumas, M. K. Nakhleh, M. R. Ghigna, E. Fadel, M. Humbert, P. Chaurand, D. Touboul, S. Cohen-Kaminsky, and A. Brunelle, Multimodal imaging mass spectrometry to identify markers of pulmonary arterial hypertension in human lung tissue using MALDI-ToF, ToF-SIMS, and hybrid SIMS, Anal. Chem., 92(17), 12079 (2020). https://doi.org/10.1021/acs.analchem.0c02815
  27. X. Hua, M. J. Marshall, Y. Xiong, X. Ma, Y. Zhou, A. E. Tucker, Z. Zhu, S. Liu, and X. Y. Yu, Two- dimensional and three-dimensional dynamic imaging of live biofilms in a microchannel by time-of-flight secondary ion mass spectrometry, Biomicrofluidics, 9(3), 031101 (2015). https://doi.org/10.1063/1.4919807
  28. A. Ahuja, A. Potanin, and Y. M. Joshi, Two step yielding in soft materials, Adv. Colloid. Interface. Sci., 282, 102179 (2020). https://doi.org/10.1016/j.cis.2020.102179
  29. H. C. Flemming and J. Wingender, The biofilm matrix. Nat. Rev. Microbiol., 8, 623 (2010). https://doi.org/10.1038/nrmicro2415
  30. C. Guilhen, C. Forestier, and D. Balestrino, Biofilm dispersal: multiple elaborate strategies for dissemination of bacteria with unique properties, Mol. Microbiol., 105(2), 188 (2017). https://doi.org/10.1111/mmi.13698