DOI QR코드

DOI QR Code

Investigation on Electrochemical Characteristics of Metallic Bipolar Plates with Chloride Concentrations for PEMFC

고분자 전해질 연료전지 금속 분리판용 금속의 염화물 농도에 따른 전기화학적 특성 연구

  • Shin, Dong-Ho (Graduate school, Mokpo national maritime university) ;
  • Kim, Seong-Jong (Division of marine engineering, Mokpo national maritime university)
  • 신동호 (목포해양대학교 대학원) ;
  • 김성종 (목포해양대학교 기관시스템공학부)
  • Received : 2021.10.06
  • Accepted : 2021.10.07
  • Published : 2021.12.31

Abstract

Currently, the demand for eco-friendly energy sources is high, which has prompted research on polymer electrolyte membrane fuel cells. Both aluminum alloys and nickel alloys, which are commonly considered as materials of bipolar plates in fuel cells, oxide layers formed on the metal surface have excellent corrosion resistance. In this research, the electrochemical characteristics of 6061-T6 aluminum alloy and Inconel 600 were investigated with chloride concentrations in an acid environment that simulated the cathode condition of the PEMFC. After potentiodynamic polarization experiments, Tafel analysis and surface analysis were performed. Inconel 600 presented remarkably good corrosion resistance under all test conditions. The corrosion current density of 6061-T6 aluminum alloy was significantly higher than that of Inconel 600 under all test conditions. Also, 6061-T6 aluminum alloy and Inconel 600 presented uniform corrosion and intergranular corrosion, respectively. The Ni, Cr, and Fe, which are the main chemical compositions of Inconel 600, are higher than Al in the electromotive force series. And a double oxide film of NiO-Cr2O3, which is more stable than Al2O3, is formed. Thus, the corrosion resistance of Inconel 600 is better.

Keywords

References

  1. S. H. Lee, J. S. Kim, N. H. Kang, H. H. Jo, and D. H. Nam, Surface Characteristic of Graphene Coated Stainless Steel for PEMFC Bipolar Plate, Journal of the Korean Institute of Surface Engineering, 44, 226 (2011). Doi: http://dx.doi.org/10.5695/JKISE.2011.44.5.226
  2. A. Hermann, T. Chaudhuri and P. Spagnol, Bipolar plates for PEM fuel cells: A review, International Journal of Hydrogen Energy, 30, 1297 (2005). Doi: https://doi.org/10.1016/j.ijhydene.2005.04.016
  3. K. S. Weil, J. Y. Kim, G. Xia, J. Coleman, and Z. G. Yang, Boronization of nickel and nickel clad materials for potential use in polymer electrolyte membrane fuel cells, Surface & Coatings Technology, 201, 4436 (2006). Doi: https://doi.org/10.1016/j.surfcoat.2006.08.039
  4. J. Scholta, B. Rohland, V. Trapp, and U. Focken, Investigations on novel low-cost graphite composite bipolar plates, Journal of Power Sources, 84, 231 (1999). Doi: https://doi.org/10.1016/S0378-7753(99)00322-5
  5. D. R. Hodgson, B. May, P. L. Adcock, and D. P. Davies, New lightweight bipolar plate system for polymer electrolyte membrane fuel cells, Journal of Power Sources, 96, 233 (2001). Doi: https://doi.org/10.1016/S0378-7753(01)00568-7
  6. K. M. Kim, S. U. Koh, and K. Y. Kim, Effect of Tantalum and Lanthanum Addition on Electrochemical Property of Austenitic Stainless Steel in a Simulated PEMFC Environment, Corrosion Science and Technology, 7, 338 (2008). Doi https://scienceon.kisti.re.kr/srch/selectPORSrchArticle.do?cn=JAKO200821161843187
  7. H. Tawfik, Y. Hung, and D. Mahajan, Metal bipolar plates for PEM fuel cell-A review, Journal of Power Sources, 163, 755 (2007). Doi: https://doi.org/10.1016/j.jpowsour.2006.09.088
  8. K. H. Hou, C. H. Lin, M. D. Ger, S. W. Shiah, and H. M. Chou, Analysis of the Corrosion Behavior of Al Alloy Bipolar Plate for Proton Exchange Membrane Fuel Cell (PEMFC) Under Operating Thermal Conditions, International Journal of Green Energy, 9, 71 (2012). Doi: https://doi.org/10.1080/15435075.2011.621474
  9. S. Rivas, E. Cuara, F. Manriquez, I. R. Terol, and G. Orozco, Corrosion Performance of Stainless Steel and Inconel in Simulated Fuel-Cell Media, Journal of The Electrochemical Society, 38, 13 (2007). Doi: https://doi.org/10.1149/1.2806946
  10. R. F. Silva, D. Franchi, A. Leone, L. Pilloni, A. Masci, and A. Pozio, Surface conductivity and stability of metallic bipolar plate materials for polymer electrolyte fuel cells, Electrochimica. Acta, 51, 3592 (2006). Doi: https://doi.org/10.1016/j.electacta.2005.10.015
  11. S. Aryani, and R. Taherian, Int. Multidisciplinary research e-journal, 3, 232 (2016).
  12. P. J. Dillon, R. A. Reid, and R. Girard, Changes in the Chemistry of Lakes Near Subury, Ontario Following Reductions of SO2 Emissions, Water Air Soil Poll, 31, 59 (1986). Doi: https://doi.org/10.1007/978-94-009-3385-9_111
  13. L. V. Biert, M. Godjevac, K. Visser, and P. V. Aravind, A review of fuel cell systems for maritime applications, Journal of Power Sources, 327, 345 (2016). Doi: https://doi.org/10.1016/j.jpowsour.2016.07.007
  14. J. R, Davis, Corrosion of aluminum and aluminum alloys, pp. 25 - 26, ASM International (1999).
  15. A. L. Paulina, O. X. Octavio, G. L. Diego, V. L. Natalya, A. D. A. Marco, V. L. Irina, and A. E. Elsa, The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate, Materials, 7, 5711 (2014). Doi: https://doi.org/10.3390/ma7085711
  16. S. R. Kumar, S. D. Krishnaa, M. D. Krishan, N. T. Gokulkumar, and A. R. Alilesh, Investigation on corrosion behaviour of aluminium 6061-T6 alloy in acidic, alkaline and salt medium, Materials Today : Proceedings, 45, 1878 (2021). Doi: https://doi.org/10.1016/j.matpr.2020.09.079
  17. M. Curioni and F. Scenini, The Mechanism of Hydrogen Evolution During Anodic Polarization of Aluminium, Electrochimica Acta, 180, 712 (2015). Doi: https://doi.org/10.1016/j.electacta.2015.08.076
  18. K. S. Athanasios and G. L. Angeliki, Electrochemical Behavior of Al-Al9Co2 Alloys in Sulfuric Acid, Corrosion and Materials Degradation, 1, 249 (2020). Doi: https://doi.org/10.3390/cmd1020012
  19. H. S. Kwon, H. S. Kim, C. J. Park, and H. J. Jang, Comprehension of stainless steels, p. 168, 191, Steel & Metal News (2007).
  20. D. A. Jones, Principles and prevention of corrosion, pp. 267 - 281, Pearson (1992).
  21. H. Nagano and H. Kajjmura, Clarification of stress corrosion cracking mechanism on nickel base alloys in steam generators for their long lifetime assurance, United States: NACE International, 6 (1995). Doi: https://inis.iaea.org/search/search.aspx?orig_q=RN:27043608
  22. T. Xu, S. Wang, X. Tang, Y. Li, J. Yang, J. Li, and Y. Zhang, Corrosion Mechanism of Inconel 600 in Oxidizing Supercritical Aqueous Systems Containing Multiple Salts, Industrial & Enginnering Chemistry Research, 58, 23046 (2019). Doi: https://doi.org/10.1021/acs.iecr.9b04527
  23. B. M. Dougall, Effect of Chloride Ion on the Localized Breakdown of Nickel Oxide Films, Journal of The Electrochemical Society, 126, 919 (1979). Doi: https://doi.org/10.1149/1.2129194
  24. C. R. Clayton and Y. C. Lu, A Bipolar Model of the Passivity of Stainless Steel: The Role of Mo Addition, Journal of The Electrochemical Society, 133, 2465 (1986). Doi: https://doi.org/10.1149/1.2108451
  25. L. R. Hilbert, D. B. Ravn, J. Kold, and L. Gram, Influence of surface roughness of stainless steel on microbial adhesion and corrosion resistance, International Biodeterioration & Biodegradation, 52, 175 (2003). Doi: https://doi.org/10.1016/S0964-8305(03)00104-5
  26. G. T. Burstein, and S. P. Vines, Repetitive Nucleation of Corrosion Pits on Stainless Steel and the Effects of Surface Roughness, Journal of The Electrochemical Society, 148, 504 (2001). Doi: https://doi.org/10.1149/1.1416503
  27. ASTM, G46-94, Standard Guide for Examination and Evaluation of PittingCorrosion, p. 5, ASTM International, West Conshohocken, PA (2005).
  28. A. U. Malic, P. C. M. Kutty, N. A. Siddiqi, N. Andijani, and S. Ahmed, The influence of pH and chloride concentration on the corrosion behaviour of AISI 316L steel in aqueous solutions, Corrosion Science, 33, 1809 (1992). Doi: https://doi.org/10.1016/0010-938X(92)90011-Q