DOI QR코드

DOI QR Code

Numerical and experimental investigation for monitoring and prediction of performance in the soft actuator

  • Received : 2020.05.23
  • Accepted : 2020.09.11
  • Published : 2021.01.25

Abstract

Due to various benefits such as unlimited degrees of freedom, environment adaptability, and safety for humans, engineers have used soft materials with hyperelastic behavior in various industrial, medical, rescue, and other sectors. One of the applications of these materials in the fabrication of bending soft actuators (SA) is that they have eliminated many problems in the actuators such as production cost, mechanical complexity, and design algorithm. However, SA has complexities, such as predicting and monitoring behavior despite the many benefits. The first part of this paper deals with the prediction of SA behavior through mathematical models such as Ogden and Darijani, and its comparison with the results of experiments. At first, by examining different geometric models, the cubic structure was selected as the optimal structure in the investigated models. This geometrical structure at the same pressure showed the most significant bending in the simulation. The simulation results were then compared with experimental, and the final gripper model was designed and manufactured using a 3D printer with silicone rubber as for the polymer part. This geometrical structure is capable of bending up to a 90-degree angle at 70 kPa in less than 2 seconds. The second section is dedicated to monitoring the bending behavior created by the strain sensors with different sensitivity and stretchability. In the fabrication of the sensors, silicon is used as a soft material with hyperelastic behavior and carbon fiber as a conductive material in the soft material substrate. The SA designed in this paper is capable of deforming up to 1000 cycles without changing its characteristics and capable of moving objects weigh up to 1200 g. This SA has the capability of being used in soft robots and artificial hand making for high-speed objects harvesting.

Keywords

References

  1. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  2. Amjadi, M., Kyung, K.U., Park, I. and Sitti, M. (2016), "Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review", Adv. Funct. Mater., 26(11), 1678-1698. https://doi.org/10.1002/adfm.201504755.
  3. Amjadi, M., Yoon, Y. J., and Park, I. (2015), "Ultra-Stretchable and Skin-Mountable Strain Sensors Using Carbon Nanotubes-Ecoflex Nanocomposites", Nanotechnology., 26(37), 375501. https://doi.org/10.1088/0957-4484/26/37/375501.
  4. Anani, Y., and Rahimi, G.H., (2015), "Stress Analysis of Thick Pressure Vessel Composed of Functionally Graded Incompressible Hyperelastic Materials", Int. J. Mech. Sci., 104, 1-7. https://doi.org/10.1016/j.ijmecsci.2015.09.012.
  5. Antonelli, M. G., Beomonte Zobel, P., Durante, F. and Raparelli, T. (2019), "Additive Manufacturing Applications on Flexible Actuators for Active Orthoses and Medical Devices", J. Healthc. Eng., 2019. https://doi.org/10.1155/2019/5659801.
  6. Arani, A.G., Bidgoli, A.H., Ravandi, A.K., Roudbari, M.A., Amir, S., and Azizkhani, M.B. (2013), "Induced nonlocal electric wave propagation of boron nitride nanotubes", J. Mech. Sci. Tech., 27(10), 3063-3071. https://doi.org/10.1007/s12206-013-0705-7
  7. Azami, O., Morisaki, D., Miyazaki, T., Kanno, T. and Kawashima, K. (2019), "Development of the Extension Type Pneumatic Soft Actuator with Built-in Displacement Sensor", Sensors Actuators, A Phys., 300, 111623. https://doi.org/10.1016/j.sna.2019.111623.
  8. Aziz, Shahid, Kyung-chae Jung and Seung-hwan Chang (2019), "Stretchable Strain Sensor Based on a Nanocomposite of Zinc Stannate Nanocubes and Silver Nanowires", Compos. Struct., 224, 111005. https://doi.org/10.1016/j.compstruct.2019.111005.
  9. Azizkhani, M.B., Rastgordani, S., Anaraki, A.P., Kadkhodapour, J. and Hadavand, B.S. (2019), "Highly Sensitive and Stretchable Strain Sensors Based on Chopped Carbon Fibers Sandwiched between Silicone Rubber Layers for Human Motion Detections", J. Compos. Mater., 54(3), 423-434. https://doi.org/10.1177/0021998319855758.
  10. Azizkhani, M.B., Kadkhodapour, J., Anaraki, A.P. and Shirkavand Hadavand, B. (2020), "Study of body movement monitoring utilizing nano-composite strain sensors containing carbon nanotubes and silicone rubber", Steel comp. struct., 35(6), 779-788. https://doi.org/10.12989/scs.2020.35.6.779.
  11. Azizkhani, M.B., Kadkhodapour, J., Rastgordani, S., Anaraki, A. P. and Hadavand, B.S. (2019), "Highly Sensitive, Stretchable Chopped Carbon Fiber/Silicon Rubber Based Sensors for Human Joint Motion Detection", Fibers Polym., 20(1), 35-44. https://doi.org/10.1007/s12221-019-8662-0.
  12. Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R., (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comp. Concrete, 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579
  13. Bien-aime, L.K.M., Blaise, B.B. and Beda, T. (2020), "Characterization of Hyperelastic Deformation Behavior of Rubber-like Materials", SN Appl. sci., 2(4). https://doi.org/10.1007/s42452-020-2355-6.
  14. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A., and Tounsi, A., (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Sys., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197
  15. Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Bedia, E.A. and Tounsi, A., (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comp. Concrete, 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155
  16. Chen, J., Zhu, Y. and Jiang, W. (2020), "A Stretchable and Transparent Strain Sensor Based on Sandwich-like PDMS / CNTs / PDMS Composite Containing an Ultrathin Conductive CNT Layer", Compos. Sci. Technol., 186, 107938. https://doi.org/10.1016/j.compscitech.2019.107938.
  17. Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A., (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geom. Eng., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471
  18. Cho, K. H., Song, M. G., Yang, S. Y., Kim, Y., Jung, H., Moon, H., Koo, J.C., Nam, J. and Choi, H. R. (2017), "Super Stretchable Soft Actuator Made of Twisted and Coiled Spandex Fiber", Electroact. Polym. Actuators Devices., 10163, 101630W. https://doi.org/10.1117/12.2261611.
  19. Chu, J., Marsden, A. J., Young, R. J. and Bissett, M. A. (2019), "Graphene-Based Materials as Strain Sensors in Glass Fiber / Epoxy Model Composites", ACS Appl. Mater. Interfaces., 11, 31338-31345. https://doi.org/10.1021/acsami.9b09862.
  20. Cohen, D. J., Mitra, D., Peterson, K. and Maharbiz, M. M. (2012), "A Highly Elastic, Capacitive Strain Gauge Based on Percolating Nanotube Networks", Nano Lett., 12(4), 1821-1825. https://doi.org/10.1021/nl204052z.
  21. Deng, H., Ji, M., Yan, D., Fu, S., Duan, L., Zhang, M. and Fu, Q. (2014), "Towards Tunable Resistivity-Strain Behavior through Construction of Oriented and Selectively Distributed Conductive Networks in Conductive Polymer Composites", J. Mater. Chem. A., 2(26), 10048-58. https://doi.org/10.1039/C4TA01073F.
  22. Roh, E., Hwang, B.U., Kim, D., Kim, B.Y. and Lee, N.E., (2015), "Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers", ACS Nano., 6, 6252-6261. https://doi.org/10.1021/acsnano.5b01613.
  23. Giffney, T., Bejanin, E., Kurian, A. S., Travas-Sejdic, J. and Aw, K. (2017), "Highly Stretchable Printed Strain Sensors Using MultiWalled Carbon Nanotube/Silicone Rubber Composites", Sensors Actuators A Phys., 259, 44-49. https://doi.org/10.1016/j.sna.2017.03.005.
  24. Ghorbanpour, A.A., Karamali, R.A., Roudbari, M.A., Azizkhani, M.B., and HAFIZI, B.A., (2015), "Axial and transverse vibration of SWBNNT system coupled Pasternak foundation under a moving nanoparticle using Timoshenko beam theory", J. Solid Mech., 7(3), 239-254.
  25. Hajmohammad, M. H., Azizkhani, M. B., and Kolahchi, R. (2018), "Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: Dynamic buckling analysis", J. Mech. Sci., 137, 205-213. https://doi.org/10.1016/j.ijmecsci.2018.01.026
  26. Hashiguchi, K. (2019), "Multiplicative Hyperelastic-Based Plasticity for Finite Elastoplastic Deformation/Sliding: A Comprehensive Review", Arch. Comput. Methods Eng., 26. https://doi.org/10.1007/s11831-018-9256-5.
  27. Ho, M. D., Ling, Y., Yap, L. W., Wang, Y., Dong, D., Zhao, Y. and Cheng, W. (2017), "Percolating Network of Ultrathin Gold Nanowires and Silver Nanowires toward 'Invisible' Wearable Sensors for Detecting Emotional Expression and Apexcardiogram", Adv. Funct. Mater., 27(25), 1-9. https://doi.org/10.1002/adfm.201700845.
  28. Homberg, B. S., Katzschmann, R. K., Dogar, M. R. and Rus, D. (2019), "Robust Proprioceptive Grasping with a Soft Robot Hand", Auton Robots., 43(3), 681-96. https://doi.org/10.1007/s10514-018-9754-1.
  29. Huang, J., Li, D., Zhao, M., Mensah, A., Lv, P., Tian, X., Huang, F., Ke, H. and Wei, Q. (2019), "Highly sensitive and stretchable cnt-bridged agnp strain sensor based on TPU electrospun membrane for human motion detection", Adv. Electron. Mater., 5(6), 1-8. https://doi.org/10.1002/aelm.201900241.
  30. Hussain, M., Naeem, M.N., Khan, M.S., and Tounsi, A. (2020), "Computer-aided approach for modelling of FG cylindrical shell sandwich with ring supports", Comp. Concrete, 25(5), 411-425. https://doi.org/10.12989/cac.2020.25.5.411
  31. Ju, M., Park, K., Moon, D., Park, C., and Sim, J. (2018), "On strain measurement of smart GFRP bars with built-in fiber Bragg grating sensor", Struct. Eng. Mech., 65(2), 155-162. https://doi.org/10.12989/sem.2018.65.2.155
  32. Junius Santoso, Erik H. Skorina, Marco Salerno, Sebastien de Rivaz, Jamie Paik, and Cagdas D. Onal. (2019), "Single Chamber Multiple Degree-of-Freedom Soft 11 12 Pneumatic Actuator Enabled by Adjustable Stiffness 13 Layers", Smart Mater. Struct., 28(3), 035012. https://doi.org/10.1088/1361-665X/aaf9c0
  33. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E.A., and Al-Osta, M.A., (2020), "A study on the structural behavior of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comp. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037
  34. Song, K., Kim, S. and Cha, Y. (2020), "Soft electromagnetic actuator for assembly robots", Smart Mater. Struct., https://doi.org/10.1088/1361-6463/aad7de.
  35. Kaloop, M.R., Hwang, W.S., Elbeltagi, E., Beshr, A. and Hu, J.W., (2019), "Evaluation of Dorim-Goh bridge using ambient trucks through short-period structural health monitoring system", Struct. Eng. Mech., 69(3), 347-359. https://doi.org/10.12989/sem.2019.69.3.347
  36. Karami, B., Janghorban, M., and Tounsi, A., (2019), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comp, 35(4), 1297-1316. https://doi.org/10.1007/s00366-018-0664-9
  37. Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a fourvariable quasi 3D HSDT", Eng. Comp, 36, 1-15. https://doi.org/10.1007/s00366-019-00732-1
  38. Koziol, M., Toron, B., Szperlich, P. and Jesionek, M. (2019), "Fabrication of a Piezoelectric Strain Sensor Based on SbSI Nanowires as a Structural Element of a FRP Laminate", Comp. Part B Eng., 157, 58-65. https://doi.org/10.1016/j.compositesb.2018.08.105.
  39. Kumpika, T.E., Kantarak, A. Sriboonruang, W. Tippo, S.W., Thongpan, W. and Pooseekheaw, P. (2020), "Stretchable and Compressible Strain Sensors for Gait Monitoring Constructed Using Carbon Nanotube / Graphene Composite Stretchable and Compressible Strain Sensors for Gait Monitoring Constructed Using Carbon Nanotube / Graphene Composite", Mat. Res. Exp., 7(3), 035006. https://doi.org/10.1088/2053-1591/ab748d
  40. Li, H., Yao, J., Zhou, P., Zhao, W., Xu, Y. and Zhao, Y., (2019), "Design and modeling of a high-load soft robotic gripper inspired by biological winding", Bioinspired. Biomim., 15(2), 026006. https://doi.org/10.1088/1748-3190/ab6033
  41. Liu, Y. Z., Hao, Z. W., Yu, J. X., Zhou, X. R., Lee, P. S., Sun, Y., Mu, Z.C. and Zeng, F. L. (2019), "A high-performance soft actuator based on a poly(vinylidene fluoride) piezoelectric bimorph", Smart Mater. Struct., 28(5), https://doi.org/10.1088/1361-665X/ab0844.
  42. Lu, N., Lu, C., Yang, S. and Rogers, J. (2012), "Highly Sensitive Skin-Mountable Strain Gauges Based Entirely on Elastomers", Adv. Funct. Mater., 22(19), 4044-4050. https://doi.org/10.1002/adfm.201200498.
  43. Luo, S. and Liu, T. (2013), "Structure-Property-Processing Relationships of Single-Wall Carbon Nanotube Thin Film Piezoresistive Sensors", Carbon., 59, 315-324. https://doi.org/10.1016/j.carbon.2013.03.024.
  44. Luo, Y. M., Chevalier, L., Monteiro, E., Yan, S. and Menary, G. (2020), "Simulation of the Injection Stretch Blow Molding Process: An Anisotropic Visco-Hyperelastic Model for Polyethylene Terephthalate Behavior", Polym. Eng. Sci., 60(4), 823-831. https://doi.org/10.1002/pen.25341.
  45. Mansouri, M R, and H Darijani. (2014), "Constitutive Modeling of Isotropic Hyperelastic Materials in an Exponential Framework Using a Self-Contained Approach", J. Solids Struct., 51 (25-26), 4316-26. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2014.08.018.
  46. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E.A., Tounsi, A., Mahmoud, S.R., Tounsi, A. and Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.
  47. Miriyev, A., Xia, B., Joseph, J.C. and Lipson, H. (2019), "Additive Manufacturing of Silicone Composites for Soft Actuation", 3D Print. Addit. Manuf., 6(6), 309-318. https://doi.org/10.1089/3dp.2019.0116.
  48. Mohamed, M. H., Wagdy, S. H., Atalla, M. A., Rehan Youssef, A. and Maged, S. A. (2020), "A Proposed Soft Pneumatic Actuator Control Based on Angle Estimation from Data-Driven Model", Proc. Inst. Mech. Eng. Part H J. Eng. Med. https://doi.org/10.1177/0954411920911277.
  49. Montazerian, H., Rashidi, A., Dalili, A., Najjaran, H., Milani, A. S. and Hoorfar, M. (2019), "Graphene-Coated spandex sensors embedded into silicone sheath for composites health monitoring and wearable applications", Small., 15(17), 1-12. https://doi.org/10.1002/smll.201804991.
  50. Mosadegh, B., Polygerinos, P., Keplinger, C., Wennstedt, S., Shepherd, R. F., Gupta, U., Shim, J., Bertoldi, K., Walsh, C. and Whitesides, G.M. (2014), "Pneumatic networks for soft robotics that actuate rapidly", Adv. Funct. Mater, 24(15), 2163-2170. https://doi.org/10.1002/adfm.201303288.
  51. Natarajan, E., Razif, M. R. M., Faudzi, A. A. M. and Palanikumar, K. (2020), "Evaluation of a Suitable Material for Soft Actuator through Experiments and FE Simulations", Int. J. Manuf. Mater. Mech. Eng., 10(2), 64-76. https://doi.org/10.4018/IJMMME.2020040104.
  52. Pinto, T., Cai, L., Wang, C. and Tan, X. (2017), "CNT-Based Sensor Arrays for Local Strain Measurements in Soft Pneumatic Actuators", Int. J. Intell. Robot. Appl. 1(2), 157-66. https://doi.org/10.1007/s41315-017-0018-6.
  53. Polygerinos, P., Lyne, S., Wang, Z., Nicolini, L. F., Mosadegh, B., Whitesides, G. M. and Walsh, C. J. (2013), "Towards a Soft Pneumatic Glove for Hand Rehabilitation", IEEE Int. Conf. Intell. Robot. Syst., 1512-1517. https://doi.org/10.1109/IROS.2013.6696549.
  54. Rahmani, M.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A., (2020), "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a fourunknown refined integral plate theory", Comp. Concrete, 25(3), 225-244. https://doi.org/10.12989/cac.2020.25.3.225
  55. Ren, L., Li, B., Song, Z., Liu, Q., Ren, L. and Zhou, X. (2019), "3D Printing of Structural Gradient Soft Actuators by Variation of Bioinspired Architectures", J. Mater. Sci., 54(8), 6542-6551. https://doi.org/10.1007/s10853-019-03344-8.
  56. Ren, M., Zhou, Y., Wang, Y., Zheng, G., Dai, K., Liu, C. and Shen, C. (2019), "Highly Stretchable and Durable Strain Sensor Based on Carbon Nanotubes Decorated Thermoplastic Polyurethane Fibrous Network with Aligned Wave-like Structure", Chem. Eng. J., 762-777. https://doi.org/10.1016/j.cej.2018.12.025.
  57. Rukhlenko, I. D., Farajikhah, S., Lilley, C., Georgis, A., Large, M., and Fleming, S. (2020), "Performance Optimization of Polymer Fibre Actuators for Soft Robotics", Polymers., 12(2), https://doi.org/10.3390/polym12020454.
  58. Sang, Z., Ke, K. and Manas-Zloczower, I. (2019), "Effect of carbon nanotube morphology on properties in thermoplastic elastomer composites for strain sensors", Compos. Part A Appl. Sci. Manuf., 121, 207-212. https://doi.org/10.1016/j.compositesa.2019.03.007.
  59. Savino, P., Gherlone, M., and Tondolo, F., (2019), "Shape sensing with inverse finite element method for slender structures", Struct. Eng. Mech., 72(2), 217-227. https://doi.org/10.12989/sem.2019.72.2.217
  60. Shariati, A., Ghabussi, A., Habibi, M., Safarpour, H., Safarpour, M., Tounsi, A. and Safa, M. (2020), "Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation", Thin-Walled Struct., 154, 106840. https://doi.org/10.1016/j.tws.2020.106840.
  61. Shepherd, R.F., Ilievski, F., Choi, W., Morin, S.A., Stokes, A.A., Mazzeo, A.D., Chen, X., Wang, M. and Whitesides, G.W. (2011), "Multigait soft robot", Proc. Natl. Acad. Sci. U.S.A., 108(51), 20400-20403. https://doi.org/10.1073/pnas.1116564108.
  62. Shintake, J., Sonar, H., Piskarev, E., Paik, J. and Floreano, D. (2017), "Soft pneumatic gelatin actuator for edible robotics", IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2017, 3-8. http://arxiv.org/abs/1703.01423.
  63. Steck, D., Qu, J., Kordmahale, S. B., Tscharnuter, D., Muliana, A. and Kameoka, J. (2019), "Mechanical responses of ecoflex silicone rubber: compressible and incompressible behaviors", J. Appl. Polym. Sci., 136(5), 1-11. https://doi.org/10.1002/app.47025.
  64. Sun, T., Chen, Y., Han, T., Jiao, C., Lian, B. and Song, Y. (2020), "A soft gripper with variable stiffness inspired by pangolin scales, toothed pneumatic actuator and autonomous controller", Robot. Comput. Integr. Manuf., 61. https://doi.org/10.1016/j.rcim.2019.101848.
  65. Taherkhani, B., Azizkhani, M.B., Kadkhodapour, J., Anaraki, A.P. and Rastgordani, S. (2020), "Highly Sensitive, Piezoresistive, Silicone/Carbon Fiber-Based Auxetic Sensor for Low Strain Values Bahman", Sensors Actuators A. Phys., 111939. https://doi.org/10.1016/j.sna.2020.111939.
  66. Tounsi, A., Al-Dulaijan, S. U., Al-Osta, M. A., Chikh, A., Al-Zahrani, M. M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermomechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Comp. Struct., 34(4), 511. https://doi.org/10.12989/scs.2020.34.4.511
  67. Trivedi, D., Dienno, D. and Rahn, C. D. (2008), "Optimal, ModelBased Design of Soft Robotic Manipulators", J. Mech. Des. Trans. ASME., 130(9), 0914021-29. https://doi.org/10.1115/1.2943300.
  68. Wang, L., Chen, Y., Lin, L., Wang, H., Huang, X., Xue, H. and Gao, J. (2019), "Highly Stretchable, Anti-Corrosive and Wearable Strain Sensors Based on the PDMS / CNTs Decorated Elastomer Nano Fiber Composite", Chem. Eng. J., 362, 89-98. https://doi.org/10.1016/j.cej.2019.01.014.
  69. Wang, Z., Zhang, Q., Yue, Y., Xu, J., Xu, W., Sun, X., Chen, Y., Jiang, J. and Liu, Y. (2019), "3D Printed Graphene/Polydimethylsiloxane Composite for Stretchable Strain Sensor with Tunable Sensitivity", Nanotechnology., 30(34), 345501. https://doi.org/10.1088/1361-6528/ab1287
  70. Wurdemann, H.A. (2018), "Directly printable flexible strain sensors for bending and contact feedback of soft actuators", Frontiers Robotics AI., 5, 1-14. https://doi.org/10.3389/frobt.2018.00002.
  71. Xiang, S., Chen, S., Yao, M., Zheng, F. and Lu, Q. (2019), "Strain Sensor Based on a Flexible Polyimide Ionogel for Application in High- and Low-Temperature Environments", J. Mater. Chem. C., 7(31), 9625-9632. https://doi.org/10.1039/c9tc02719j.
  72. Xu, H., Lv, Y., Qiu, D., Zhou, Y., Zeng, H. and Chu, Y. (2019), "An Ultra-Stretchable, Highly Sensitive and Biocompatible Capacitive Strain Sensor from an Ionic Nanocomposite for onSkin Monitoring", Nanoscale, 11(4), 1570-78. https://doi.org/10.1039/c8nr08589g.
  73. Yan, X., Bowen, C., Yuan, C., Hao, Z. and Pan, M. (2019), "Carbon fibre based flexible piezoresistive composites to empower inherent sensing capabilities for soft actuators", Soft Matter, 15(40), 8001-8011. https://doi.org/10.1039/c9sm01046g.
  74. Yao, S. and Zhu, Y. (2014), "Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires", Nanoscale., 6(4), 2345. https://doi.org/10.1039/c3nr05496a.
  75. Xiao, Y., Jiang, S., Li, Y. and Zhang, W. (2020), "Highly sensitive printed crack-enhanced strain sensor as dual-directional bending detector", Smart Mater. Struct., 29(4), 045023. https://doi.org/10.1088/1361-665X/ab75a2.
  76. Yashiro, S., Wada, J. and Sakaida, Y. (2017), "A monitoring technique for disbond area in carbon fiber-reinforced polymer bonded joints using embedded fiber bragg grating sensors: Development and experimental validation", Struct. Heal. Monit., 16(2), 185-201. https://doi.org/10.1177/1475921716669979.
  77. Zarei, M.S., Azizkhani, M.B., Hajmohammad, M.H., and Kolahchi, R. (2017), "Dynamic buckling of polymer-carbon nanotube-fiber multiphase nanocomposite viscoelastic laminated conical shells in hygrothermal environments", J. Sandw. Struct. Mater., 109963621774328. https://doi.org/10.1177/1099636217743288.
  78. Zhang, L., Kou, H., Tan, Q., Liu, G., Zhang, W. and Xiong, J. (2019), "High-performance strain sensor based on a 3d conductive structure for wearable electronics", J. Phys. D. Appl. Phys., 52(39), 395401. https://doi.org/10.1088/1361-6463/ab2c78
  79. Zhang, X., Cao, J., Yang, Y., Wu, X., Zheng, Z. and Zhang, X. (2019), "Flame-Retardant, highly sensitive strain sensors enabled by renewable phytic acid-doped biotemplate synthesis and spirally structure design", Chem. Eng. J., 374, 730-737. https://doi.org/10.1016/j.cej.2019.05.211.
  80. Zhao, J., He, C., Yang, R., Shi, Z., Cheng, M., Yang, W., Xie, G., Wang, D., Shi, D. and Zhang, G. (2012), "Ultra-Sensitive strain sensors based on piezoresistive nanographene films", Appl. Phys. Lett., 101(6), 2010-2015. https://doi.org/10.1063/1.4742331.
  81. Zhou, H., Zheng, S., Qu, C., Wang, D., Liu, C., Wang, Y., Fan, X., Xiao, W., I, Ho., Zhao, D., Chang, J., Chen, C. and Zhao, X. (2019), "Simple and environmentally friendly approach for preparing high- performance polyimide precursor hydrogel with fully aromatic structures for strain sensor", Eur. Polym. J., 114, 346-52. https://doi.org/10.1016/j.eurpolymj.2019.01.043.
  82. Zhu, Li, Zhou, X., Liu, Y. and Fu, Q. (2019), "Highly sensitive, ultrastretchable strain sensors prepared by pumping hybrid fillers of carbon nanotubes/cellulose nanocrystal into electrospun polyurethane membranes", ACS Appl. Mater. Interfaces., 11(13), 12968-12977. https://doi.org/10.1021/acsami.9b00136.