Acknowledgement
이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원(No. 2021R1A6A3A01087243, 2016R1A6A1A03013422)을 받아 수행된 기초연구사업임.
References
- J.-M. Bonard, H. Kind, T. Stockli, and L.-O. Nilsson, "Field Emission from Carbon Nanotubes: the First Five Years", Solid.State Electron., 2001, 45, 893-914. https://doi.org/10.1016/S0038-1101(00)00213-6
- W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, "Synthesis of Graphene and Its Applications: A Review", Crit. Rev. Solid State Mater. Sci., 2010, 35, 52-71. https://doi.org/10.1080/10408430903505036
- G. S. Bocharov and A. V. Eletskii, "Theory of Carbon Nanotube (CNT)-Based Electron Field Emitters", Nanomaterials, 2013, 3, 393-442. https://doi.org/10.3390/nano3030393
- C. Li, X. Zhou, F. Zhai, Z. Li, F. Yao, R. Qiao, K. Chen, M. T. Cole, D. Yu, Z. Sun, K. Liu, and Q. Dai, "Carbon Nanotubes as an Ultrafast Emitter with a Narrow Energy Spread at Optical Frequency", Adv. Mater., 2017, 29, 1701580. https://doi.org/10.1002/adma.201701580
- J. D. Carey, R. C. Smith, and S. R. P. Silva, "Carbon Based Electronic Materials: Applications in Electron Field Emission", J. Mater. Sci.: Mate. Electron., 2006, 17, 405-412. https://doi.org/10.1007/s10854-006-8087-6
- S. Iijima, "Helical Microtubules of Graphitic Carbon", Nature, 1991, 354, 56-58. https://doi.org/10.1038/354056a0
- N. de Jonge, Y. Lamy, K. Schoots, and T. H. Oosterkamp, "High Brightness Electron Beam from a Multi-walled Carbon Nanotube", Nature, 2002, 420, 393-395. https://doi.org/10.1038/nature01233
- J. Zhang, J. Tang, G. Yang, Q. Qiu, L.-C. Qin, and O. Zhou, "Efficient Fabrication of Carbon Nanotube Point Electron Sources by Dielectrophoresis", Adv. Mater., 2004, 16, 1219-1222. https://doi.org/10.1002/adma.200400124
- T. T. Tan, H. S. Sim, S. P. Lau, H. Y. Yang, M. Tanemura, and J. Tanaka, "X-ray Generation Using Carbon-nanofiber-based Flexible Field Emitters", Appl. Phys. Lett., 2006, 88, 103105. https://doi.org/10.1063/1.2182022
- I. Kunadian, R. Andrews, D. Qian, and M. Pinar Menguc, "Growth Kinetics of MWCNTs Synthesized by a Continuous-feed CVD Method", Carbon, 2009, 47, 384-395. https://doi.org/10.1016/j.carbon.2008.10.022
- J. E. Kim, T. H. Han, S. H. Lee, J. Y. Kim, C. W. Ahn, J. M. Yun, and S. O. Kim, "Graphene Oxide Liquid Crystals", Angewandte Chemie, 2011, 123, 3099-3103. https://doi.org/10.1002/ange.201004692
- Z. Xu, Y. Liu, X. Zhao, L. Peng, H. Sun, Y. Xu, X. Ren, C. Jin, P. Xu, M. Wang, and C. Gao, "Ultrastiff and Strong Graphene Fibers via Full-Scale Synergetic Defect Engineering", Adv. Mater., 2016, 28, 6449-6456. https://doi.org/10.1002/adma.201506426
- W. Eom, S. H. Lee, H. Shin, W. Jeong, K. H. Koh, and T. H. Han, "Microstructure-Controlled Polyacrylonitrile/Graphene Fibers over 1 Gigapascal Strength", ACS Nano, 2021, 15, 13055-13064. https://doi.org/10.1021/acsnano.1c02155
- W. Eom, E. Lee, S. H. Lee, T. H. Sung, A. J. Clancy, W. J. Lee, and T. H. Han, "Carbon Nanotube-reduced Graphene Oxide Fiber with High Torsional Strength from Rheological Hierarchy Control", Nat. Commun., 2021, 12, 396. https://doi.org/10.1038/s41467-020-20518-0
- P. Li, Y. Liu, S. Shi, Z. Xu, W. Ma, Z. Wang, S. Liu, and C. Gao, "Highly Crystalline Graphene Fibers with Superior Strength and Conductivities by Plasticization Spinning", Adv. Funct. Mater., 2020, 30, 2006584. https://doi.org/10.1002/adfm.202006584
- G. Xin, T. Yao, H. Sun, S. M. Scott, D. Shao, G. Wang, and J. Lian, "Highly Thermally Conductive and Mechanically Strong Graphene Fibers", Science, 2015, 349, 1083-1087. https://doi.org/10.1126/science.aaa6502
- H. Park, K. H. Lee, Y. B. Kim, S. B. Ambade, S. H. Noh, W. Eom, J. Y. Hwang, W. J. Lee, J. Huang, and T. H. Han, "Dynamic Assembly of Liquid Crystalline Graphene Oxide Gel Fibers for Ion Transport", Sci. Adv., 2018, 4, eaau2104. https://doi.org/10.1126/sciadv.aau2104
- D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, "Processable Aqueous Dispersions of Graphene Nanosheets", Nat. Nanotechnol., 2008, 3, 101-105. https://doi.org/10.1038/nnano.2007.451
- L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, and I. Bieloshapka, "Graphene Oxide and Reduced Graphene Oxide Studied by the XRD, TEM and Electron Spectroscopy Methods", J. Electron. Spectrosc. Relat. Phenom., 2014, 195, 145-154. https://doi.org/10.1016/j.elspec.2014.07.003
- K. Krishnamoorthy, M. Veerapandian, K. Yun, and S. J. Kim, "The Chemical and Structural Analysis of Graphene Oxide with Different Degrees of Oxidation", Carbon, 2013, 53, 38-49. https://doi.org/10.1016/j.carbon.2012.10.013
- S. Rattana, Chaiyakun, N. Witit-anun, N. Nuntawong, P. Chindaudom, S. Oaew, C. Kedkeaw, and P. Limsuwan, "Preparation and Characterization of Graphene Oxide Nanosheets", Procedia Engineering, 2012, 32, 759-764. https://doi.org/10.1016/j.proeng.2012.02.009
- D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, "Chemical Analysis of Graphene Oxide Films after Heat and Chemical Treatments by X-ray Photoelectron and Micro-raman Spectroscopy.", Carbon, 2009, 47, 145-152. https://doi.org/10.1016/j.carbon.2008.09.045
- W. Song, I. A. Kinloch, and A. H. Windle, "Nematic Liquid Crystallinity of Multiwall Carbon Nanotubes", Science, 2003, 302, 1363-1363. https://doi.org/10.1126/science.1089764
- V. A. Davis, L. M. Ericson, A. N. G. Parra-Vasquez, H. Fan, Y. Wang, V. Prieto, J. A. Longoria, S. Ramesh, R. K. Saini, C. Kittrell, W. E. Billups, W. W. Adams, R. H. Hauge, R. E. Smalley, and M. Pasquali, "Phase Behavior and Rheology of SWNTs in Superacids", Macromolecules, 2004, 37, 154-160. https://doi.org/10.1021/ma0352328
- Z. Xu and C. Gao, "Graphene Chiral Liquid Crystals and Macroscopic Assembled Fibres", Nat. Commun., 2011, 2, 571. https://doi.org/10.1038/ncomms1583
- W. Eom, H. Park, S. H. Noh, K. H. Koh, K. Lee, W. J. Lee, and T. H. Han, "Strengthening and Stiffening Graphene Oxide Fiber with Trivalent Metal Ion Binders", Particle & Particle Systems Characterization, 2017, 34, 1600401. https://doi.org/10.1002/ppsc.201600401
- Y. Li, H. Zhu, S. Zhu, J. Wan, Z. Liu, O. Vaaland, S. Lacey, Z. Fang, H. Dai, T. Li, and L. Hu, "Hybridizing Wood Cellulose and Graphene Oxide Toward High-performance Fibers", NPG Asia Materials, 2015, 7, e150. https://doi.org/10.1038/am.2014.111
- S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, "Hydrazine-reduction of Graphite- and Graphene Oxide", Carbon, 2011, 49, 3019-3023. https://doi.org/10.1016/j.carbon.2011.02.071
- M. J. Fernandez-Merino, L. Guardia, J. I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, and J. M. D. Tascon, "Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions", The Journal of Physical Chemistry C, 2010, 114, 6426-6432. https://doi.org/10.1021/jp100603h
- S. Jin, Q. Gao, X. Zeng, R. Zhang, K. Liu, X. Shao, and M. Jin, "Effects of Reduction Methods on the Structure and Thermal Conductivity of Free-standing Reduced Graphene Oxide Films", Diamond Relat. Mater., 2015, 58, 54-61. https://doi.org/10.1016/j.diamond.2015.06.005
- S. Pei, J. Zhao, J. Du, W. Ren, and H.-M. Cheng, "Direct Reduction of Graphene Oxide Films into Highly Conductive and Flexible Graphene Films by Hydrohalic Acids", Carbon, 2010, 48, 4466-4474. https://doi.org/10.1016/j.carbon.2010.08.006
- K. Dave, K. H. Park, and M. Dhayal, "Two-step Process for Programmable Removal of Oxygen Functionalities of Graphene Oxide: Functional, Structural and Electrical Characteristics", RSC Adv., 2015, 5, 95657-95665. https://doi.org/10.1039/C5RA18880F
- S.-J. Choi, S.-J. Kim, and I.-D. Kim, "Ultrafast Optical Reduction of Graphene Oxide Sheets on Colorless Polyimide Film for Wearable Chemical Sensors", NPG Asia Materials, 2016, 8, e315. https://doi.org/10.1038/am.2016.150