DOI QR코드

DOI QR Code

Evaluation of Field Emission Characteristics Using Graphene Fiber

그래핀 섬유를 이용한 전계 방출 특성 평가

  • 이은송 (한양대학교 유기나노공학과) ;
  • 엄원식 (한양대학교 유기나노공학과) ;
  • 김영배 (어썸레이 주식회사) ;
  • 정근수 (어썸레이 주식회사) ;
  • 김세훈 (어썸레이 주식회사) ;
  • 한태희 (한양대학교 유기나노공학과)
  • Received : 2021.12.06
  • Accepted : 2021.12.24
  • Published : 2021.12.31

Abstract

We fabricated reduced graphene oxide fiber through wet spinning and chemically reduction method. We observed the reduction of graphene oxide by using Raman spectroscopy and X-ray photoelectron spectroscopy. The mechanical and electrical properties of reduced graphene oxide fiber were also measured and both properties were improved by reduction of graphene oxide fiber. We applied the reduced graphene oxide fiber to electrode for the electron emission. The emission current was 1.0 mA and the field enhancement was 4.97×103. It shows that the reduced graphene oxide fiber would be applicable as a material for electron emission.

Keywords

Acknowledgement

이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원(No. 2021R1A6A3A01087243, 2016R1A6A1A03013422)을 받아 수행된 기초연구사업임.

References

  1. J.-M. Bonard, H. Kind, T. Stockli, and L.-O. Nilsson, "Field Emission from Carbon Nanotubes: the First Five Years", Solid.State Electron., 2001, 45, 893-914. https://doi.org/10.1016/S0038-1101(00)00213-6
  2. W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, "Synthesis of Graphene and Its Applications: A Review", Crit. Rev. Solid State Mater. Sci., 2010, 35, 52-71. https://doi.org/10.1080/10408430903505036
  3. G. S. Bocharov and A. V. Eletskii, "Theory of Carbon Nanotube (CNT)-Based Electron Field Emitters", Nanomaterials, 2013, 3, 393-442. https://doi.org/10.3390/nano3030393
  4. C. Li, X. Zhou, F. Zhai, Z. Li, F. Yao, R. Qiao, K. Chen, M. T. Cole, D. Yu, Z. Sun, K. Liu, and Q. Dai, "Carbon Nanotubes as an Ultrafast Emitter with a Narrow Energy Spread at Optical Frequency", Adv. Mater., 2017, 29, 1701580. https://doi.org/10.1002/adma.201701580
  5. J. D. Carey, R. C. Smith, and S. R. P. Silva, "Carbon Based Electronic Materials: Applications in Electron Field Emission", J. Mater. Sci.: Mate. Electron., 2006, 17, 405-412. https://doi.org/10.1007/s10854-006-8087-6
  6. S. Iijima, "Helical Microtubules of Graphitic Carbon", Nature, 1991, 354, 56-58. https://doi.org/10.1038/354056a0
  7. N. de Jonge, Y. Lamy, K. Schoots, and T. H. Oosterkamp, "High Brightness Electron Beam from a Multi-walled Carbon Nanotube", Nature, 2002, 420, 393-395. https://doi.org/10.1038/nature01233
  8. J. Zhang, J. Tang, G. Yang, Q. Qiu, L.-C. Qin, and O. Zhou, "Efficient Fabrication of Carbon Nanotube Point Electron Sources by Dielectrophoresis", Adv. Mater., 2004, 16, 1219-1222. https://doi.org/10.1002/adma.200400124
  9. T. T. Tan, H. S. Sim, S. P. Lau, H. Y. Yang, M. Tanemura, and J. Tanaka, "X-ray Generation Using Carbon-nanofiber-based Flexible Field Emitters", Appl. Phys. Lett., 2006, 88, 103105. https://doi.org/10.1063/1.2182022
  10. I. Kunadian, R. Andrews, D. Qian, and M. Pinar Menguc, "Growth Kinetics of MWCNTs Synthesized by a Continuous-feed CVD Method", Carbon, 2009, 47, 384-395. https://doi.org/10.1016/j.carbon.2008.10.022
  11. J. E. Kim, T. H. Han, S. H. Lee, J. Y. Kim, C. W. Ahn, J. M. Yun, and S. O. Kim, "Graphene Oxide Liquid Crystals", Angewandte Chemie, 2011, 123, 3099-3103. https://doi.org/10.1002/ange.201004692
  12. Z. Xu, Y. Liu, X. Zhao, L. Peng, H. Sun, Y. Xu, X. Ren, C. Jin, P. Xu, M. Wang, and C. Gao, "Ultrastiff and Strong Graphene Fibers via Full-Scale Synergetic Defect Engineering", Adv. Mater., 2016, 28, 6449-6456. https://doi.org/10.1002/adma.201506426
  13. W. Eom, S. H. Lee, H. Shin, W. Jeong, K. H. Koh, and T. H. Han, "Microstructure-Controlled Polyacrylonitrile/Graphene Fibers over 1 Gigapascal Strength", ACS Nano, 2021, 15, 13055-13064. https://doi.org/10.1021/acsnano.1c02155
  14. W. Eom, E. Lee, S. H. Lee, T. H. Sung, A. J. Clancy, W. J. Lee, and T. H. Han, "Carbon Nanotube-reduced Graphene Oxide Fiber with High Torsional Strength from Rheological Hierarchy Control", Nat. Commun., 2021, 12, 396. https://doi.org/10.1038/s41467-020-20518-0
  15. P. Li, Y. Liu, S. Shi, Z. Xu, W. Ma, Z. Wang, S. Liu, and C. Gao, "Highly Crystalline Graphene Fibers with Superior Strength and Conductivities by Plasticization Spinning", Adv. Funct. Mater., 2020, 30, 2006584. https://doi.org/10.1002/adfm.202006584
  16. G. Xin, T. Yao, H. Sun, S. M. Scott, D. Shao, G. Wang, and J. Lian, "Highly Thermally Conductive and Mechanically Strong Graphene Fibers", Science, 2015, 349, 1083-1087. https://doi.org/10.1126/science.aaa6502
  17. H. Park, K. H. Lee, Y. B. Kim, S. B. Ambade, S. H. Noh, W. Eom, J. Y. Hwang, W. J. Lee, J. Huang, and T. H. Han, "Dynamic Assembly of Liquid Crystalline Graphene Oxide Gel Fibers for Ion Transport", Sci. Adv., 2018, 4, eaau2104. https://doi.org/10.1126/sciadv.aau2104
  18. D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, "Processable Aqueous Dispersions of Graphene Nanosheets", Nat. Nanotechnol., 2008, 3, 101-105. https://doi.org/10.1038/nnano.2007.451
  19. L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, and I. Bieloshapka, "Graphene Oxide and Reduced Graphene Oxide Studied by the XRD, TEM and Electron Spectroscopy Methods", J. Electron. Spectrosc. Relat. Phenom., 2014, 195, 145-154. https://doi.org/10.1016/j.elspec.2014.07.003
  20. K. Krishnamoorthy, M. Veerapandian, K. Yun, and S. J. Kim, "The Chemical and Structural Analysis of Graphene Oxide with Different Degrees of Oxidation", Carbon, 2013, 53, 38-49. https://doi.org/10.1016/j.carbon.2012.10.013
  21. S. Rattana, Chaiyakun, N. Witit-anun, N. Nuntawong, P. Chindaudom, S. Oaew, C. Kedkeaw, and P. Limsuwan, "Preparation and Characterization of Graphene Oxide Nanosheets", Procedia Engineering, 2012, 32, 759-764. https://doi.org/10.1016/j.proeng.2012.02.009
  22. D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, "Chemical Analysis of Graphene Oxide Films after Heat and Chemical Treatments by X-ray Photoelectron and Micro-raman Spectroscopy.", Carbon, 2009, 47, 145-152. https://doi.org/10.1016/j.carbon.2008.09.045
  23. W. Song, I. A. Kinloch, and A. H. Windle, "Nematic Liquid Crystallinity of Multiwall Carbon Nanotubes", Science, 2003, 302, 1363-1363. https://doi.org/10.1126/science.1089764
  24. V. A. Davis, L. M. Ericson, A. N. G. Parra-Vasquez, H. Fan, Y. Wang, V. Prieto, J. A. Longoria, S. Ramesh, R. K. Saini, C. Kittrell, W. E. Billups, W. W. Adams, R. H. Hauge, R. E. Smalley, and M. Pasquali, "Phase Behavior and Rheology of SWNTs in Superacids", Macromolecules, 2004, 37, 154-160. https://doi.org/10.1021/ma0352328
  25. Z. Xu and C. Gao, "Graphene Chiral Liquid Crystals and Macroscopic Assembled Fibres", Nat. Commun., 2011, 2, 571. https://doi.org/10.1038/ncomms1583
  26. W. Eom, H. Park, S. H. Noh, K. H. Koh, K. Lee, W. J. Lee, and T. H. Han, "Strengthening and Stiffening Graphene Oxide Fiber with Trivalent Metal Ion Binders", Particle & Particle Systems Characterization, 2017, 34, 1600401. https://doi.org/10.1002/ppsc.201600401
  27. Y. Li, H. Zhu, S. Zhu, J. Wan, Z. Liu, O. Vaaland, S. Lacey, Z. Fang, H. Dai, T. Li, and L. Hu, "Hybridizing Wood Cellulose and Graphene Oxide Toward High-performance Fibers", NPG Asia Materials, 2015, 7, e150. https://doi.org/10.1038/am.2014.111
  28. S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, "Hydrazine-reduction of Graphite- and Graphene Oxide", Carbon, 2011, 49, 3019-3023. https://doi.org/10.1016/j.carbon.2011.02.071
  29. M. J. Fernandez-Merino, L. Guardia, J. I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, and J. M. D. Tascon, "Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions", The Journal of Physical Chemistry C, 2010, 114, 6426-6432. https://doi.org/10.1021/jp100603h
  30. S. Jin, Q. Gao, X. Zeng, R. Zhang, K. Liu, X. Shao, and M. Jin, "Effects of Reduction Methods on the Structure and Thermal Conductivity of Free-standing Reduced Graphene Oxide Films", Diamond Relat. Mater., 2015, 58, 54-61. https://doi.org/10.1016/j.diamond.2015.06.005
  31. S. Pei, J. Zhao, J. Du, W. Ren, and H.-M. Cheng, "Direct Reduction of Graphene Oxide Films into Highly Conductive and Flexible Graphene Films by Hydrohalic Acids", Carbon, 2010, 48, 4466-4474. https://doi.org/10.1016/j.carbon.2010.08.006
  32. K. Dave, K. H. Park, and M. Dhayal, "Two-step Process for Programmable Removal of Oxygen Functionalities of Graphene Oxide: Functional, Structural and Electrical Characteristics", RSC Adv., 2015, 5, 95657-95665. https://doi.org/10.1039/C5RA18880F
  33. S.-J. Choi, S.-J. Kim, and I.-D. Kim, "Ultrafast Optical Reduction of Graphene Oxide Sheets on Colorless Polyimide Film for Wearable Chemical Sensors", NPG Asia Materials, 2016, 8, e315. https://doi.org/10.1038/am.2016.150