DOI QR코드

DOI QR Code

초음파 세탁의 원리 및 최적 세척 조건 연구

Principle of Ultrasonic Washing and Optimal Washing Conditions

  • 황나원 (경북대학교 의류학과) ;
  • 황소산 (인하대학교 화학 및 화학공학 융합 대학원, 스마트 에너지 소재 및 공정 교육연구단) ;
  • 정혜원 (인하대학교 의류학과) ;
  • 심상은 (인하대학교 화학 및 화학공학 융합 대학원, 스마트 에너지 소재 및 공정 교육연구단)
  • Hwang, Nawon (Department of Clothing and Textiles, Kyungpook National University) ;
  • Hwang, Sosan (Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University) ;
  • Chung, Haewon (Department of Clothing and Textiles, Inha University) ;
  • Shim, Sang Eun (Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University)
  • 투고 : 2021.10.27
  • 심사 : 2021.11.16
  • 발행 : 2021.12.31

초록

Ultrasound produces cavitation bubbles and microstreams when generated in water to clean dirty laundry without wrinkling. This study examined the conditions for the effective ultrasonic washing of fabrics. The ultrasonic power, temperature, washing time, and liquor ratio were varied, and an oily soiled cloth was used to evaluate the detergency. The detergency of ultrasonic washing increased as the ultrasonic intensity and temperature increased from 2.7 mV to 5.1 mV, and 25 ℃ to 60 ℃, respectively. The detergency increased from 10 min to 20 min, but decreased after 40 min. The longer the washing time, the greater the soil redeposition. The liquor ratio only affected the detergency at an ultrasonic intensity of over 4.3 mV. The detergency also increased with the liquor ratio. Therefore, for effective ultrasonic washing, increasing the ultrasonic intensity is more effective than increasing the temperature. Moreover, the washing time should not be too long.

키워드

참고문헌

  1. T. J. Mason, "Ultrasound in Synthetic Organic Chemistry", Chem. Soc. Rev., 1997, 26, 443-451. https://doi.org/10.1039/CS9972600443
  2. W. G. Cutler and R. C. Davis in "Detergency: Theory and Test Methods", (M. Dekker Ed.), NY and Basel, 1972, pp.260-263.
  3. L. Azar, "Cavitation in Ultrasonic Cleaning and Cell Disruption", Controlled Environments, 2009, February, 14-17.
  4. S. Abbas, K. Hayat, E. Karangwa, M. Bashari, and X. Zhang, "An Overview of Ultrasound-Assisted Food-Grade Nanoemulsions", Food Eng. Rev., 2013, 5, 139-157. https://doi.org/10.1007/s12393-013-9066-3
  5. S. Awad, "Ultrasonic Cavitations and Precision Cleaning," Precision Cleaning Magazine, Witter Pub. Co. Inc., NJ, 1996, pp.12-17.
  6. J. Vetrimurugan, G. Michael, and L. Terry, "Effect of Temperature and Frequency on Removal of Nano-dimensional Contaminants", Int. J. Innovative Res. Sci. Eng. Technol., 2014, 3, 8587-8595.
  7. B. Kanegsberg and E. Kanegsberg, "Handbook for Critical Cleaning: Cleaning Agents and Systems", CRC Press, 2011, pp.269-280.
  8. J. R. Hesson, "Fundamentals of Ultrasonic Cleaning", HESSONIC, Washington, UT, USA, 2003, pp.6-7.
  9. https://techblog.ctgclean.com/2011/12/ultrsonics-number-andsize-of-cavitation-bubbles/ (Accessed October 6, 2021).
  10. K. Gotoh, K. Harayama, and K. Handa, "Combination Effect of Ultra Sound and Shake as a Mechanical Action for Textile Cleaning", Ultrason. Sonochem., 2015, 22, 412-421. https://doi.org/10.1016/j.ultsonch.2014.05.005
  11. R. Peila, G. A. Grande, M. Giansetti, S. Rehman, S. Sicardi, and G. Rovero, "Washing Off Intensification of Cotton and Wool Fabrics By Ultrasounds", Ultrason. Sonochem., 2015, 23, 324-332. https://doi.org/10.1016/j.ultsonch.2014.09.004
  12. S. Perincek, A. E. Uzgur, K. Duran, A. Dogan, A. E. Korlu, and I. M. Bahtiyari, "Design Parameter Investigation of Industrial Size Ultrasound Textile Treatment Bath", Ultrason. Sonochem., 2009, 16, 184-189. https://doi.org/10.1016/j.ultsonch.2008.06.003
  13. V. S. Moholkar and M. M. C. G. Warmoeskerken, "Mechanistic Aspects and Optimization of Ultrasonic Washing", AATCC Rev., 2002, 2, 34-37.
  14. B. Niemczewski, "Cavitation Intensity of Water under Practical Ultrasonic Cleaning Conditions", Ultrason. Sonochem., 2014, 21, 354-359. https://doi.org/10.1016/j.ultsonch.2013.07.003
  15. B. Niemczewski, "Influence of Concentration of Substances Used in Ultrasonic Cleaning in Alkaline Solutions on Cavitation Intensity", Ultrason. Sonochem., 2009, 16, 402-407. https://doi.org/10.1016/j.ultsonch.2008.09.002
  16. W. Kim, T. H. Kim, J. Choi, and H. Y. Kim, "Mechanism of Particle Removal by Megasonic Waves", Appl. Phys. Lett., 2009, 94, 081908/1-081908/3.
  17. J. Choi, T. H. Kim, H. Y. Kim, and W. Kim, "Ultrasonic Washing of Textiles", Ultrason. Sonochem., 2016, 29, 563-567. https://doi.org/10.1016/j.ultsonch.2015.07.018
  18. V. S. Moholkar and M. M. C. G. Warmoeskerken, "Investigations in Mass Transfer Enhancement in Textiles with Ultrasound", Chem. Eng. Sci., 2004, 59, 299-311. https://doi.org/10.1016/j.ces.2003.09.018
  19. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19950025362.pdf (Accessed October 6, 2021).
  20. http://www.organic-chemistry.org/topics/sonochemistry.shtm (Accessed October 6, 2021).
  21. M. M. C. G. Warmoeskerken, P. Van der Vlist, V. S. Moholkar, and V. A. Nierstrasz, "Laundry Process Intensification by Ultrasound", Colloids Surf. A: Physicochem. Eng. Asp., 2002, 210, 277-285. https://doi.org/10.1016/S0927-7757(02)00372-2
  22. Blackstone-ney Ultrasonics, "Fundamentals of Ultrasonic & Megasonic Cleaning", Process Cleaning Magazine, Gardner Publications, Inc., US, 2009, pp.1-6.
  23. S. R. Kim, "The Science of Detergent and Laundry", Gyomoonsa, Paju, Korea, 1988, pp.134-171.
  24. G. V. Datar, P. Banks-Lee, and P. L. Grady, "Acoustical Characteristics of Fabrics in High-intensity Ultrasound", Appl. Acoust., 1996, 48, 33-45. https://doi.org/10.1016/0003-682X(95)00045-B
  25. J. A. Gallego-Juarez, E. Riera, V. Acosta, G. Rodriguez, and A. Blanco, "Ultrasonic System for Continuous Washing of Textiles in Liquid Layers", Ultrason. Sonochem., 2010, 17, 234-238. https://doi.org/10.1016/j.ultsonch.2009.06.005
  26. K. Gotoh and K. Harayama, "Application of Ultrasound to Textiles Washing in Aqueous Solutions", Ultrason. Sonochem., 2013, 20, 747-753. https://doi.org/10.1016/j.ultsonch.2012.10.001