DOI QR코드

DOI QR Code

Preparation and Characterization of PET Coating Yarns Filled with Inorganic Particle/Polyurethane by Twin-screw Melt Compounder

이축압출을 활용한 무기입자 폴리우레탄 용융혼련 PET 코팅사 제조 연구

  • Yu, Sung-Uk (Korea Dyeing & Finishing Technology Institute, Busan Textile Materials Promotion Center) ;
  • Lee, Gi-Bong (Korea Dyeing & Finishing Technology Institute, Busan Textile Materials Promotion Center) ;
  • Ahn, Ji-Hoon (Korea Dyeing & Finishing Technology Institute, Busan Textile Materials Promotion Center) ;
  • Choi, Joo-Hwan (Korea Dyeing & Finishing Technology Institute, Busan Textile Materials Promotion Center)
  • 유성욱 (DYETEC연구원 부산섬유소재진흥센터) ;
  • 이기봉 (DYETEC연구원 부산섬유소재진흥센터) ;
  • 안지훈 (DYETEC연구원 부산섬유소재진흥센터) ;
  • 최주환 (DYETEC연구원 부산섬유소재진흥센터)
  • Received : 2021.11.15
  • Accepted : 2021.12.14
  • Published : 2021.12.31

Abstract

This study investigates the use of inorganic fillers (CaCO3, ZnO, ZrO2, and TiO2) with thermoplastic polyurethane (TPU) as polyethylene terephthalate (PET) coating yarns to improve their mechanical properties. TPU is the most widely used coating material for thermal melting because of its excellent mechanical properties, functionality, and processability. The mechanical properties (e.g., tensile strength and tensile strain) and thermal properties of prepared TPU compounds were investigated with different inorganic filler contents. TPU resin was melt-mixed using a twin-screw extruder for uniform mixing by filler type and inorganic particle concetration. The core PET yarns were melt-coated without thermal decomposition at approximately 200 ℃. The properties of the inorganic filler/TPU compound were analyzed by a universal testing machine, Fourier-transform infrared spectrometer, differential scanning calorimeter, and dynamic mechanical analysis. The dispersibility of inorganic fillers (ZnO and TiO2) in the TPUs was better than that of CaCO3 and ZrO2. The mechanical properties, thermal properties, and scanning electron microscopy images are ranked in the following order: TiO2 > ZnO > ZrO2 > CaCO3.

Keywords

Acknowledgement

본 연구는 2020년도 산업통상자원부 산업집적지경쟁력강화사업(RBS20002)의 연구비 지원을 받아 수행된 연구이며, 이에 감사드립니다.

References

  1. H. D. Park, Korea Pat., 10-2018-0002184 (2018).
  2. S.-H. Lee, "Development of Eco-friendly Woven Floor Mat with High Resilience II-characterization of TPU Coating Yarn and Floor Mat", Fashion Text. Res. J., 2012, 14, 635-640. https://doi.org/10.5805/KSCI.2012.14.4.635
  3. C. D. Han and D. Rao, "Studies on Wire Coating Extrusion. 1. Rheology of Wire Coating Extrusion", Polym. Eng. Sci., 1978, 18, 1019-1029. https://doi.org/10.1002/pen.760181309
  4. S. J. Kim, E. H. Lee, K. Heo, and H. A. Kim, "Study on Manufacturing Technology of Coating Yarns for Awning Fabrics", Text. Coloration and Finishing, 2015, 27, 35-49. https://doi.org/10.5764/TCF.2015.27.1.35
  5. S. Mahalingam, S. Homer-vanniasinkam, and M. Edirisinghe, "Novel Pressurised Gyration Device for Making Core-sheath Polymer Fibres", Mater. Des., 2019, 178, 107846. https://doi.org/10.1016/j.matdes.2019.107846
  6. L. van der Werff, I. L. Kyratzis, A. Robinson, R. Cranston, G. Peeters, M. O'Shea, and L. Nichols, "Thermochromic Composite Fibres Containing Liquid Crystals Formed via Melt Extrusion", J. Mater. Sci., 2013, 48, 5005-5011. https://doi.org/10.1007/s10853-013-7287-8
  7. A. A. Leal, J. C. Veeramachaneni, F. A. Reifler, M. Amberg, D. Stapf, G. A. Barandun, D. Hegemann, and R. Hufenus, "Novel Approach for the Development of Ultra-light, Fully-thermoplastic Composites", Mater. Des., 2016, 93, 334-342. https://doi.org/10.1016/j.matdes.2015.12.125
  8. J. Won, M. A. Said, and A. F. M. Seyam, "Development of UV Protective Sheath for High Performance Fibers for High Altitude Applications", Fiber. Polym., 2013, 14, 647-652. https://doi.org/10.1007/s12221-013-0647-9
  9. J. Ganster and H. P. Fink, "Novel Cellulose Fibre Reinforced Thermoplastic Materials", Cellulose, 2006, 13, 271-280. https://doi.org/10.1007/s10570-005-9045-9
  10. V. Betingyte, K. Zukiene, V. Jankauskaite, D. Milasiene, K.V. Mickus, and A. Gulbiniene, "Influence of Calcium Carbonate Fillers on the Properties of Recycled Poly(e-caprolactone) Based Thermoplastic Polyurethane", Mater. Sci., 2012, 18, 243-249.
  11. M. M. Rahman, "Polyurethane/Zinc Oxide (PU/ZnO) Composite-Synthesis, Protective Property and Application", Polymers, 2020, 12, 1535. https://doi.org/10.3390/polym12071535
  12. B. Biswas, N. R. Bandyopadhyay, N. Mukherjee, and A. Sinha, "Mechanical Behaviour of Jute/ZrO2 Based Polyester Composites at Microstructural Scale", Fiber. Polym., 2021, 22, 1731-1742. https://doi.org/10.1007/s12221-021-0114-y
  13. X. Chen, W. Wang, S. Li, Y. Qian, and C. Jiao, "Synthesis of TPU/TiO2 Nanocomposites by Molten Blending Method", J. Thermal Analysis and Calorimetry, 2018, 132, 793-803. https://doi.org/10.1007/s10973-017-6944-6
  14. A. K. Bledzki, A. Jaszkiewicz, and D. Scherzer, "Mechanical Properties of PLA Composites with Man-made Cellulose and Abaca Fibres", Compos. Part A: Appl. Sci. Manuf., 2009, 40, 404-412. https://doi.org/10.1016/j.compositesa.2009.01.002
  15. S. Lee and H. Kim, "A Review on the Screw Configuration of Intermeshing Co-rotating Twin Screw Extruder", Korean Chem. Eng. Res., 2021, 59, 305-315. https://doi.org/10.9713/KCER.2021.59.3.305
  16. M. Wilson, M. A. Williams, D. S. Jones, and G. P. Andrews, "Hot-melt Extrusion Technology and Pharmaceutical Application", Therapeutic Delivery, 2012, 3, 787-797. https://doi.org/10.4155/tde.12.26
  17. S. Samimi Gharaie, S. Habibi, and H. Nazockdast, "Fabrication and Characterization of Chitosan/gelatin/thermoplastic Polyurethane Blend Nanofibers", J. Text. Fibrous Mater., 2018, 1, 2515221118769324.
  18. N. Wada, N. Horiuchi, M. Nakamura, K. Nozaki, A. Nagai, and K. Yamashita, "Controlled Crystallization of Calcium Carbonate via Cooperation of Polyaspartic Acid and Polylysine under Double-diffusion Conditions in Agar Hydrogels", ACS Omega, 2018, 3, 16681-16692. https://doi.org/10.1021/acsomega.8b02445
  19. G. Nagaraju, Udayabhanu, Shivaraj, S. A. Prashanth, M. Shastri, K. V. Yathish, C. Anupama, and D. Rangappa, "Electrochemical Heavy Metal Detection, Photocatalytic, Photoluminescence, Biodiesel Production and Antibacterial Activities of Ag-ZnO Nanomaterial", Mater. Res. Bull., 2017, 94, 54-63. https://doi.org/10.1016/j.materresbull.2017.05.043
  20. H. C. Madhusudhana, S. N. Shobhadevi, B. M. Nagabhushana, B. V. Chaluvaraju, M. V. Murugendrappa, R. Hari Krishna, H. Nagabhushana, and N. R. Radeep, "Effect of Fuels on Conductivity, Dielectric and Humidity Sensing Properties of ZrO2 Nanocrystals Prepared by Low Temperature Solution Combustion Method", J. Asian Ceram. Soc., 2016, 4, 309-318. https://doi.org/10.1016/j.jascer.2016.05.009
  21. A. Leon, P. Reuquen, C. Garin, R. Segura, P. Vargas, P. Zapata, and P. A. Orihuela, "FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-methoxyestradiol", Appl. Sci., 2017, 7, 49. https://doi.org/10.3390/app7010049
  22. Y. C. Han, D. H. Kim, K. S. Oh, H. J. Shin, J. H. Yang, and H. M. Jeong, "Effect of Polyethylene Glycol Molecular Weight and NCO Index on Properties of the Hydrophilic Reactive Hotmelt Polyurethane Adhesives", Text. Coloration and Finishing, 2018, 30, 90-97. https://doi.org/10.5764/TCF.2018.30.2.90
  23. J. Choi, S. Yu, S. Yang, and M. Cho, "The Glass Transition and Thermoelastic Behavior of Epoxy-based Nanocomposites: A Molecular Dynamics Study", Polymer, 2011, 52, 5197-5203. https://doi.org/10.1016/j.polymer.2011.09.019
  24. W. S. Choi and J. J. Park, "Properties of EMNC according to Addition Contents Variation for Nanosilica (1)-For Thermal Properties", J. Korean Institute of Electr. Electron. Mater. Eng., 2012, 25, 798-804. https://doi.org/10.4313/JKEM.2012.25.10.798
  25. K. M. Shahil and A. A. Balandin, "Thermal Properties of Graphene and Multilayer Graphene: Applications in Thermal Interface Materials", Solid State Commun., 2012, 152, 1331-1340. https://doi.org/10.1016/j.ssc.2012.04.034
  26. F. Du, C. Guthy, T. Kashiwagi, J. E. Fischer, and K. I. Winey, "An Infiltration Method for Preparing Single-wall Nanotube/Epoxy Composites with Improved Thermal Conductivity", J. Polym. Sci. B Polym. Phys., 2006, 44, 1513-1519. https://doi.org/10.1002/polb.20801
  27. J. Xu, K. M. Razeeb, and S. Roy, "Thermal Properties of Single Walled Carbon Nanotube-silicone Nanocomposites", J. Polym. Sci. B Polym. Phys., 2008, 46, 1845-1852. https://doi.org/10.1002/polb.21519