DOI QR코드

DOI QR Code

Thermal Inactivation of Myrosinase from White Mustard Seeds

  • Ko, Young Hwan (Dept. of Food Bioengineering, Jeju National University) ;
  • Lee, Ran (Dept. of Food Bioengineering, Jeju National University)
  • Received : 2020.11.16
  • Accepted : 2020.12.02
  • Published : 2021.02.28

Abstract

Myrosinases (thioglucosidases) catalyze the hydrolysis of a class of compounds called glucosinolates, of which the aglycones show various biological functions. It is often necessary to minimize the loss of myrosinase activity during thermal processing of cruciferous vegetables. Myrosinase was isolated from a popular spice, white mustard (Sinapis alba), and its thermal inactivation kinetics was investigated. The enzyme was extracted from white mustard seeds and purified by a sequential processes of ammonium sulfate fractionation, Concanavalin A-Sepharose column chromatography, and gel permeation chromatography. At least three isozymes were revealed by Concanavalin A-Sepharose column chromatography. The purity of the major myrosinase was examined by native polyacrylamide gel electrophoresis and on-gel activity staining with methyl red. The molecular weight of the major enzyme was estimated to be 171 kDa. When the consecutive step model was used for the thermal inactivation of the major myrosinase, its inactivation energy was 44.388 kJ/mol for the early stage of destruction and 32.019 kJ/mol for the late stage of destruction. When the distinct two enzymes model was used, the inactivation energy was 77.772 kJ/mol for the labile enzyme and 95.145 kJ/mol for the stable enzyme. The thermal inactivation energies lie within energy range causing nutrient destruction on heating.

Keywords

Acknowledgement

This work was supported by the research grant of Jeju National University, Republic of Korea, in 2019.

References

  1. Albena T, Dinkova K, Rumen VK. 2012. Glucosinolates and isothiocyanates in health and disease. Trends Mol Med 18:337-347 https://doi.org/10.1016/j.molmed.2012.04.003
  2. Bellostas N, Petersen IL, Sorensen JC, Sorensen H. 2008. A fast and gentle method for the isolation of myrosinase complexes from Brassicaceous seeds. J Biochem Biophys Methods 70:918-925 https://doi.org/10.1016/j.jprot.2007.11.006
  3. Bhat R, Kaur T, Khajuria M, Vyas R, Vyas D. 2015. Purification and characterization of a novel redox-regulated isoform of myrosinase (β-thioglucoside glucohydrolase) from Lepidium latifolium L. J Agric Food Chem 63:10218-10226 https://doi.org/10.1021/acs.jafc.5b04468
  4. Bjorkman R, Janson JC. 1972. Studies on myrosinases: I. Purification and characterization of a myrosinase from white mustard seed (Sinapis alba L.). Biochim Biophys Acta Enzymol 276:508-518 https://doi.org/10.1016/0005-2744(72)91011-X
  5. Bones AM, Rossiter JT. 1996. The myrosinase-glucosinolate system, its organization and biochemistry. Physiol Plant 97:194-208 https://doi.org/10.1034/j.1399-3054.1996.970128.x
  6. Brunelle JL, Green R. 2014. Chapter thirteen - coomassie blue staining. In Lorsch J (Ed.), Methods in Enzymology. Vol. 541, pp.161-167. Academic Press
  7. Burmeister WP, Cottaz S, Driguez H, Iori R, Palmieri S, Henrissat B. 1997. The crystal structures of Sinapis alba myrosinase and a covalent glycosyl-enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase. Structure 5:663-676 https://doi.org/10.1016/S0969-2126(97)00221-9
  8. Davis BJ. 1964. Disc electrophoresis-II: Method and application to human serum proteins. Ann N Y Acad Sci 121:404-427 https://doi.org/10.1111/j.1749-6632.1964.tb14213.x
  9. Divakaran M, Babu KN. 2016. Mustard. In Caballero B, Finglas PM, Toldra F (Eds.), Encyclopedia of Food and Health. pp.9-19. Academic Press
  10. Durham PL, Poulton JE. 1990. Enzymic properties of purified myrosinase from Lepidium sativum seedlings. Z Naturforsch C 45:173-178 https://doi.org/10.1515/znc-1990-3-406
  11. Ghawi SK, Methven L, Rastall RA, Niranjan K. 2012. Thermal and high hydrostatic pressure inactivation of myrosinase from green cabbage: A kinetic study. Food Chem 131:1240-1247 https://doi.org/10.1016/j.foodchem.2011.09.111
  12. Gonda S, Szucs Z, Plaszko T, Cziaky Z, Kiss-Szikszai A, Vasas G, M-Hamvas M. 2018. A simple method for on-gel detection of myrosinase activity. Molecules 23:2204 https://doi.org/10.3390/molecules23092204
  13. Gupta P, Wright SE, Kim SH, Srivastava SK. 2014. Phenethyl isothiocyanate: A comprehensive review of anti-cancer mechanisms. Biochim Biophys Acta 1846:405-424
  14. Halkier BA, Gershenzon J. 2006. Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303-333 https://doi.org/10.1146/annurev.arplant.57.032905.105228
  15. Kim MY, Jang GY, Lee Y, Kim KM, Kang TS, Lee J, Jeong HS, Kim MY, Jang GY, Lee YJ, Kim KM, Lee J, Jeong HS. 2018. Effect of enhancement on functionality of germinated Adzuki bean (Angularis angularis var. nipponensis) with high hydrostatic pressure (HHP) treatment. Korean J Food Nutr 31:135-142 https://doi.org/10.9799/ksfan.2018.31.1.135
  16. Kim SY, O H, Lee P, Kim YS, Kim SY, Oh HB, Lee HR, Kim YS. 2019. Impact of different cooking methods on food quality retention of antioxidant compound in black carrot. Korean J Food Nutr 32:89-97 https://doi.org/10.9799/KSFAN.2019.32.2.089
  17. Layne E. 1957. Spectrophotometric and turbidimetric methods for measuring proteins. In Colowick SP, Kaplan NO (Eds.), Methods Enzymol. Vol. 3, pp.447-454. Academic Press
  18. Ling B, Tang J, Kong F, Mitcham EJ, Wang S. 2015. Kinetics of food quality changes during thermal processing: A review. Food Bioprocess Technol 8:343-358 https://doi.org/10.1007/s11947-014-1398-3
  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193:265-275 https://doi.org/10.1016/S0021-9258(19)52451-6
  20. Ludikhuyze L, Ooms V, Weemaes C, Hendrickx M. 1999. Kinetic study of the irreversible thermal and pressure inactivation of myrosinase from broccoli (Brassica oleracea L-Cv. italica). J Agric Food Chem 47:1794-1800 https://doi.org/10.1021/jf980964y
  21. Mahn A, Angulo A, Cabanas C. 2014. Purification and characterization of broccoli (Brassica oleracea var. italica) myrosinase (β-thioglucosidase glucohydrolase). J Agric Food Chem 62:11666-11671 https://doi.org/10.1021/jf504957c
  22. Mokhtari RB, Baluch N, Homayouni TS, Morgatskaya E, Kumar S, Kazemi P, Yeger H. 2018. The role of sulforaphane in cancer chemoprevention and health benefits: A mini-review. J Cell Community Signaling 12:91-101 https://doi.org/10.1007/s12079-017-0401-y
  23. Nambi VE, Gupta RK, Kumar S, Sharma PC. 2016. Degradation kinetics of bioactive components, antioxidant activity, colour and textural properties of selected vegetables during blanching. J Food Sci Technol 53:3073-3082 https://doi.org/10.1007/s13197-016-2280-2
  24. Naumoff DG. 2011. Hierarchical classification of glycoside hydrolases. Biochem (Mosc) 76:622-635 https://doi.org/10.1134/S0006297911060022
  25. Ohtsuru M, Hata T. 1972. Molecular properties of multiple forms of plant myrosinase. Agric Biol Chem 36:2495-2503 https://doi.org/10.1080/00021369.1972.10860577
  26. Okunade OA, Ghawi SK, Methven L, Niranjan K. 2015. Thermal and pressure stability of myrosinase enzymes from black mustard (Brassica nigra L. W.D.J Koch. var. nigra), brown mustard (Brassica juncea L. Czern. var. juncea) and yellow mustard (Sinapsis alba L. subsp. maire) seeds. Food Chem 187:485-490 https://doi.org/10.1016/j.foodchem.2015.04.054
  27. Ornstein L. 1964. Disc electrophoresis-I background and theory. Ann N Y Acad Sci 121:321-349 https://doi.org/10.1111/j.1749-6632.1964.tb14207.x
  28. Pessina A, Thomas RM, Palmieri S, Luisi PL. 1990. An improved method for the purification of myrosinase and its physicochemical characterization. Arch Biochem Biophys 280:383-389 https://doi.org/10.1016/0003-9861(90)90346-Z
  29. Robert CM, Cadet FR, Rouch CC, Pabion M, Richard-Forget F. 1995. Kinetic study of the irreversible thermal deactivation of palmito (Acanthophoenix rubra) polyphenol oxidase and effect of pH. J Agric Food Chem 43:1143-1150 https://doi.org/10.1021/jf00053a006
  30. Shalini GR, Shivhare US, Basu S. 2008. Thermal inactivation kinetics of peroxidase in mint leaves. J Food Eng 85:147-153 https://doi.org/10.1016/j.jfoodeng.2007.07.010
  31. Shin CK, Seo KL, Kang KS, Ahn CW, Kim YG, Shim KH. 1996. Purification and enzymatic properties of myrosinase in Korean mustard seed (Brassica juncea). J Korean Soc Food Sci Nutr 25:687-694
  32. Sumner JB. 1924. The estimation of sugar in diabetic urine using dinitrosalicylic acid. J Biol Chem 62:287-290 https://doi.org/10.1016/S0021-9258(18)85062-1
  33. Van Eylen D, Indrawati, Hendrickx M, Van Loey A. 2006. Temperature and pressure stability of mustard seed (Sinapis alba L.) myrosinase. Food Chem 97:263-271 https://doi.org/10.1016/j.foodchem.2005.03.046
  34. Van Eylen D, Oey I, Hendrickx M, Van Loey A. 2008. Behavior of mustard seed (Sinapis alba L.) myrosinase during temperature/pressure treatments: a case study on enzyme activity and stability. Eur Food Res Technol 226:545-553 https://doi.org/10.1007/s00217-007-0569-0
  35. Verkerk R, Dekker M. 2004. Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea L. var. capitata f. rubra DC.) after various microwave treatments. J Agric Food Chem 52:7318-7323 https://doi.org/10.1021/jf0493268
  36. Weemaes CA, Ludikhuyze LR, Van den Broeck I, Hendrickx M. 1998. Kinetics of combined pressure-temperature inactivation of avocado polyphenol oxidase. Biotechnol Bioeng 60:292-300 https://doi.org/10.1002/(SICI)1097-0290(19981105)60:3<292::AID-BIT4>3.0.CO;2-C
  37. Weng JR, Tsai CH, Kulp SK, Chen CS. 2008. Indole-3-carbinol as a chemopreventive and anti-cancer agent. Cancer Lett 262:153-163 https://doi.org/10.1016/j.canlet.2008.01.033
  38. Zhang Y. 2010. Allyl isothiocyanate as a cancer chemopreventive phytochemical. Mol Nutr Food Res 54:127-135 https://doi.org/10.1002/mnfr.200900323