DOI QR코드

DOI QR Code

Ag2Se Modified TiO2 Heterojunction with Enhanced Visible-Light Photocatalytic Performance

  • Zhu, Lei (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology) ;
  • Tang, Jia-Yao (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology) ;
  • Fan, Jia-Yi (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology) ;
  • Sun, Chen (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • 투고 : 2021.09.17
  • 심사 : 2021.10.19
  • 발행 : 2021.12.27

초록

To build a highly active photocatalytic system with high efficiency and low cast of TiO2, we report a facile hydrothermal technique to synthesize Ag2Se-nanoparticle-modified TiO2 composites. The physical characteristics of these samples are analyzed by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis, transmission electron microscopy and BET analysis. The XRD and TEM results show us that TiO2 is coupled with small sized Ag2Se nanoplate, which has an average grain size of about 30 nm in diameter. The agglomeration of Ag2Se nanoparticles is improved by the hydrothermal process, with dispersion improvement of the Ag2Se@TiO2 nanocomposite. Texbrite BA-L is selected as a simulated dye to study the photodegradation behavior of as-prepared samples under visible light radiation. A significant enhancement of about two times the photodegradation rate is observed for the Ag2Se@TiO2 nanocomposite compared with the control sample P25 and as-prepared TiO2. Long-term stability of Ag2Se@TiO2 is observed via ten iterations of recycling experiments under visible light irradiation.

키워드

참고문헌

  1. C. T. Helmes, C. C. Sigman, V. A. Fung, K. Thompson, M. K. Doeltz, M. Mackie, T. E. Klein and D. Lent, J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 19, 97 (1984). https://doi.org/10.1080/10934528409375152
  2. D. Chatterjee and S. Dasgupta, J. Photochem. Photobiol., C, 6, 186 (2005). https://doi.org/10.1016/j.jphotochemrev.2005.09.001
  3. V. Augugliaro, M. Litter, L. Palmisano and J. Soria, J. Photochem. Photobiol., C, 7, 127 (2006). https://doi.org/10.1016/j.jphotochemrev.2006.12.001
  4. K. Hashimoto, H. Irie and A. Fujishima, Jpn. J. Appl. Phys., 44, 8269 (2005). https://doi.org/10.1143/JJAP.44.8269
  5. A. L. Linsebigler, G. Q. Lu and J. T. Yates, Chem. Rev., 95, 735 (1995). https://doi.org/10.1021/cr00035a013
  6. L. M. Peter, D. J. Riley, E. J. Tull and K. G. U. Wijayantha, Chem. Commun., 10, 1030 (2002).
  7. Q. Shen, D. Arae and T. Toyoda, J. Photochem. Photobiol., A, 164, 75 (2004). https://doi.org/10.1016/j.jphotochem.2003.12.027
  8. A. Ahmad, F. Tezcan, G. Yerlikaya, Z. Rehman, H. Paksoy and G. Kardas, J. Alloys Compd., 868, 159133 (2021). https://doi.org/10.1016/j.jallcom.2021.159133
  9. P. Yu, K. Zhu, A. G. Norman, S. Ferrere, A. J. Frank and A. J. Nozik, J. Phys. Chem. B, 110, 25451 (2006). https://doi.org/10.1021/jp064817b
  10. W. S. Sheldrich and M. Wachold, Angew. Chem. Int. Ed. Engl., 36, 206 (1997). https://doi.org/10.1002/anie.199702061
  11. L. Zhu, S. Ye, A. Ali, K. Ullah, K. Y. Cho and W. C. Oh, Chin. J. Catal., 36, 603 (2015). https://doi.org/10.1016/S1872-2067(14)60275-8
  12. H. Q. Cao, Y. J. Xiao, Y. X. Lu, J. F. Yin, B. J. Li, S. S.Wu and X. M. Wu, Nano Res., 3,863 (2010). https://doi.org/10.1007/s12274-010-0057-x
  13. Z. D. Meng, L. Zhu, T. Ghosh, C. Y. Park, K. Ullah, V. Nikam and W. C. Oh, Bull. Korean Chem. Soc., 33, 3761 (2012). https://doi.org/10.5012/BKCS.2012.33.11.3761
  14. S. Mishra, D. Du, E. Jeanneau, F. Dappozze, C. Guillard, J. L. Zhang and S. Daniele, Chem. Asian J., 11, 1658 (2016). https://doi.org/10.1002/asia.201600157
  15. L. Zhu, G. Trisha, C. Y. Park, Z. D. Meng and W. C. Oh, Chin. J. Catal., 33, 1276 (2012). https://doi.org/10.1016/S1872-2067(11)60430-0
  16. D. Zhang, R. Wu , R. M. Cao and S. Xu, Mater. Lett., 300, 130218 (2021). https://doi.org/10.1016/j.matlet.2021.130218
  17. X. W. Zhang, M. H. Zhou and L. C. Lei, Carbon, 43, 1700 (2005). https://doi.org/10.1016/j.carbon.2005.02.013
  18. S. Qourzal, N. Barka, M. Tamimi, A. Assabbane, A. Nounah, A. Ihlal and Y. Ait-Ichou, Mater. Sci. Eng., C, 29, 1616 (2009). https://doi.org/10.1016/j.msec.2008.12.024
  19. L. Zhu, M. M. Peng, K. Y. Cho, S. Ye, S. Sarkar, K. Ullah, Z. D. Meng and W. C. Oh, J. Korean Ceram. Soc., 50, 504 (2013). https://doi.org/10.4191/kcers.2013.50.6.504
  20. L. Zhu, Z. D. Meng and W. C. Oh, J. Nanomater., 2012, 1 (2012).
  21. X. D. Yu, Q. Y. Wu, S. C. Jiang and Y. H. Guo, Mater. Charact., 57, 333 (2006). https://doi.org/10.1016/j.matchar.2006.02.011
  22. F. J. Zhang, J. Liu, M. L. Chen and W. C. Oh, J. Korean Ceram. Soc., 46, 263 (2009). https://doi.org/10.4191/KCERS.2009.46.3.263
  23. H. Li, B. Zhu, Y. Feng, S. Wang, S. Zhang and W. Huang, J. Solid. State. Chem., 180, 2136 (2007). https://doi.org/10.1016/j.jssc.2007.05.013
  24. Y. Xie, S. H. Heo, Y. N. Kim, S. H. Yoo and S. O. Cho, Nanotechnology, 21, 015702 (2010). https://doi.org/10.1088/0957-4484/21/1/015702
  25. O. K. Dalrymple, E. Stefanakos, M. A. Trotz and D. Y. Goswami, Appl. Catal., B, 98, 27 (2010). https://doi.org/10.1016/j.apcatb.2010.05.001
  26. K. John, D. T. Manolis, D. P. George, N. A. Mariza, S. T. Kostas, G. Sofia, B. Kyriakos, K. Christos, O. Michael and L. Alexis, Appl. Catal., B, 117, 36 (2012).
  27. Z. D. Meng, L. Zhu, K. Ullah, S. Ye and W. C. Oh, Mater. Res. Bull., 56, 45 (2014). https://doi.org/10.1016/j.materresbull.2014.04.033
  28. X. L. Zhang, Y. H. Tang, Y. Li, Y. Wang, X. N. Liu, C. B. Liu and S. L. Luo, Appl. Catal., A, 457, 78 (2013). https://doi.org/10.1016/j.apcata.2013.03.011