Mobile Health Applications Adoption for the Management of Smartphone Overdependence

스마트폰 과의존 관리를 위한 모바일 건강관리 어플리케이션 수용 모델

  • Rho, Mi Jung (College of Health Science, Dankook University)
  • 노미정 (단국대학교 공공.보건과학대학)
  • Received : 2021.09.23
  • Accepted : 2021.11.17
  • Published : 2021.12.30

Abstract

Purposes: The convenience of smartphones have lead to people's overdependence on devices, which may cause obstacles in daily life. It is useful to manage smartphone overdependence by using mobile health applications. We aimed to investigate the acceptance of mobile health applications designed to help in the management of smartphone overdependence. Methodology/Approach: We developed the extended model based on the Unified Theory of Acceptance and Use of Technology 2. The modified model had six hypotheses with six variables: result demonstrability, performance expectancy, effort expectancy, social influence, perceived risk, and behavioral intention to use. We randomly included 425 smartphone users in an online survey in 2020. A structural equation model was used to estimate the significance of the path coefficients. Findings: Performance expectancy and social influence had a very strong direct positive association with behavioral intention to use. Result demonstrability had a direct positive association with performance expectancy. Perceived risk had a strong direct negative association with performance expectancy. Performance expectancy and social influence were the main factors directly influencing the acceptance of mobile health applications for the management of smartphone overdependence. Practical Implications: We demonstrated smartphone users' acceptance of mobile health applications for smartphone overdependence management. Based on these results, we could develop mobile health applications more effectively.

연구목적: 스마트폰의 편리함은 사람들로 하여금 스마트폰 과의존을 불러 일으켜 일상생활에 여러 가지 문제를 일으킨다. 이에 모바일 헬스케어 앱을 활용하여 이를 관리하는 것은 매우 유용하다. 본 연구는 스마트폰 과의존을 관리하는데 도움이 될 수 있는 모바일 헬스케어 앱에 대한 사용자들의 수용에 대한 연구를 진행하였다. 연구방법: 우리는 확장된 통합기술수용모형 모델을 기반으로 확장된 연구모델을 개발하였다. 총 6개의 변수(사용의도, 성과기대, 노력기대, 사회 영향, 인지된 위험, 결과실증성)를 기반으로 6개의 가설을 설정하였다. 온라인 서베이를 실시하여 총 425명의 스마트폰 사용자들의 데이터를 수집하였다. 6개의 가설은 구조방정식 모형을 통해 검증하였다. 또한 최적화된 연구모형 확인을 위해 대안모델을 설정하고 결과를 비교하였다. 결과: 성과기대와 사회 영향력이 앱 사용의도에 가장 직접적으로 영향력이 강하게 나타났다. 결과실증성은 성과기대와 정의 관계를 지니고 있었다. 인지된 위험은 성과기대와 부의 관계를 가지고 있었다. 성과기대와 사회 영향력이 스마트폰 과의존을 관리하는데 유용한 모바일 헬스케어 앱 도입에 가장 큰 영향을 미치는 변수로 나타났다. 함의: 우리는 스마트폰 과의존을 관리하는데 필요한 모바일 헬스케어 앱 도입에 필요한 사용자들의 도입 요인을 살펴보았다. 이를 기반으로 보다 효과적인 모바일 헬스케어 앱 개발을 할 수 있을 것이다.

Keywords

Acknowledgement

The present research was supported by the research fund of Dankook University in 2021

References

  1. Yasudomi, K., Hamamura, T., Honjo, M., Yoneyama, A., & Uchida, M. Usage Prediction and Effectiveness Verification of App Restriction Function for Smartphone Addiction. 2020 IEEE International Conference on E-health Networking, Application & Services (HEALTHCOM).2021:1-8.
  2. S.J. Lee et al.. Design, development and implementation of a smartphone overdependence management system for the self-control of smart devices. Applied Sciences 2016; 6(12):440. https://doi.org/10.3390/app6120440
  3. Y.-H. Lin et al. Incorporation of Mobile Application (App) Measures Into the Diagnosis of Smartphone Addiction. The Journal of clinical psychiatry 2017;78(7): 866-872. https://doi.org/10.4088/JCP.15m10310
  4. M. J. Rho, I. young Choi, and J. Lee. Predictive factors of telemedicine service acceptance and behavioral intention of physicians. International journal of medical informatics 2014;83(8):559-571. https://doi.org/10.1016/j.ijmedinf.2014.05.005
  5. Byun, Harim, and Jongwoo Park. A Study on the Intention to Use Korean Telemedicine Services: Focusing on the UTAUT2 Model. Data Science and Digital Transformation in the Fourth Industrial Revolution. Springer. Cham 2021; 1-12.
  6. Idoga, P. E., Toycan, M., Nadiri, H., & Celebi, E. Assessing factors militating against the acceptance and successful implementation of a cloud based health center from the healthcare professionals' perspective: a survey of hospitals in Benue state, northcentral Nigeria. BMC medical informatics and decision making 2019; 19(1):1-18. https://doi.org/10.1186/s12911-018-0723-6
  7. M. I. Cajita, N. A. Hodgson, C. Budhathoki, and H.-R. Han. Intention to use mHealth in older adults With heart failure. Journal of Cardiovascular Nursing 2017;32(6):E1-E7. https://doi.org/10.1097/jcn.0000000000000401
  8. Ammenwerth, Elske. Technology acceptance models in health informatics: TAM and UTAUT. Stud Health Technol Inform 2019; 263: 64-71.
  9. P. Duarte and J. C. J. J. o. B. R. Pinho. A mixed methods UTAUT2-based approach to assess mobile health adoption. Journal of Business Research 2019;102:140-150. https://doi.org/10.1016/j.jbusres.2019.05.022
  10. D. Ozdemir-Gungor, M. Goken, N. Basoglu, A. Shaygan, M. Dabic, and T. U. Daim. An Acceptance Model for the Adoption of Smart Glasses Technology by Healthcare Professionals. International Business and Emerging Economy Firms: Springer 2020;163-194.
  11. E. J. T. Park. User acceptance of smart wearable devices: An expectation-confirmation model approach. Telematics and Informatics 2020;47:101318. https://doi.org/10.1016/j.tele.2019.101318
  12. T. Shemesh, S. J. T. Barnoy, and e-Health. Assessment of the Intention to Use Mobile Health Applications Using a Technology Acceptance Model in an Israeli Adult Population. Telemedicine and e-Health 2020;26(9).
  13. M. J. Rho et al. Comparison of the Acceptance of Telemonitoring for Glucose Management Between South Korea and China. Telemedicine and e-Health 2017; 23(11): 881-890. https://doi.org/10.1089/tmj.2016.0217
  14. Francis, Rita P. Examining Healthcare Providers' Acceptance of Data From Patient Self-Monitoring Devices Using Structural Equation Modeling With the UTAUT2 Model. International Journal of Healthcare Information Systems and Informatics (IJHISI) 2019; 14(1): 44-60. https://doi.org/10.4018/ijhisi.2019010104
  15. V. Venkatesh, J. Y. Thong, and X. J. M. q. Xu. Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. 2012:157-178.
  16. F. D. Davis. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly 1989: 319-340.
  17. M. B. Alazzam et al. Pilot study of EHRs acceptance in Jordan hospitals by UTAUT2. Journal of Theoretical and Applied Information Technology 2016; 85(3);378.
  18. J. Tavares, A. Goulao, T. J. I. f. H. Oliveira, and S. Care. Electronic health record portals adoption: empirical model based on UTAUT2. Informatics for Health and Social Care 2018;43(2): 109-125. https://doi.org/10.1080/17538157.2017.1363759
  19. M. Rasmi, M. B. Alazzam, M. K. Alsmadi, I. A. Almarashdeh, R. A. Alkhasawneh, and S. J. I. J. o. H. M. Alsmadi. Healthcare professionals' acceptance Electronic Health Records system: Critical literature review. Jordan case study 2018: 1-13.
  20. Tubaishat, Ahmad. Perceived usefulness and perceived ease of use of electronic health records among nurses: application of technology acceptance model. Informatics for Health and Social Care 2018; 43(4): 379-389. https://doi.org/10.1080/17538157.2017.1363761
  21. Tao, D., Shao, F., Wang, H., Yan, M., & Qu, X. Integrating usability and social cognitive theories with the technology acceptance model to understand young users' acceptance of a health information portal. Health informatics journal 2020; 26(2): 1347-1362. https://doi.org/10.1177/1460458219879337
  22. M. Yan and C. Or. Factors in the 4-week Acceptance of a Computer-Based, Chronic Disease Self-Monitoring System in Patients with Type 2 Diabetes Mellitus and/or Hypertension. Telemedicine and e-Health 2018; 24(2): 121-129. https://doi.org/10.1089/tmj.2017.0064
  23. K. Dou et al. Patients' Acceptance of Smartphone Health Technology for Chronic Disease Management: A Theoretical Model and Empirical Test. JMIR mHealth and uHealth 2017;5(12).
  24. Lazard, A. J., Watkins, I., Mackert, M. S., Xie, B., Stephens, K. K., & Shalev, H. Design simplicity influences patient portal use: the role of aesthetic evaluations for technology acceptance. Journal of the American Medical Informatics Association 2016; 23(e1): e157-e161. https://doi.org/10.1093/jamia/ocv174
  25. X. Zhang et al. User acceptance of mobile health services from users' perspectives: The role of self-efficacy and response-efficacy in technology acceptance. Informatics for Health and Social Care 2017;42(2): 194-206. https://doi.org/10.1080/17538157.2016.1200053
  26. V. Venkatesh and F. D. Davis. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science 2000; 46(2): 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926
  27. V. Venkatesh and H. Bala. Technology acceptance model 3 and a research agenda on interventions. Decision sciences 2008;39(2):273-315. https://doi.org/10.1111/j.1540-5915.2008.00192.x
  28. X. Lishan, Y. C. Chiuan, M. Choolani, and C. H. Chuan. The perception and intention to adopt female-focused healthcare applications (FHA): A comparison between healthcare workers and non-healthcare workers. International journal of medical informatics 2009; 78(4): 248-258. https://doi.org/10.1016/j.ijmedinf.2008.07.014
  29. A. C. van Bon, M. J. Kohinor, J. B. Hoekstra, G. von Basum, and J. H. DeVries. Patients' perception and future acceptance of an artificial pancreas. Journal of diabetes science and technology 2010;4(3): 596-602. https://doi.org/10.1177/193229681000400313
  30. Y.-H. Chang, M.-J. Rho, and J.-B. Lee. Predictive Factors of Telemonitoring Acceptance among Chronically-Ill Patients in Public Healthcare. Journal of International Trade & Commerce 2016; 12(4): 177-193.
  31. Kamal, S. A., Shafiq, M., & Kakria, P. Investigating acceptance of telemedicine services through an extended technology acceptance model (TAM). Technology in Society 2020; 60:101212. https://doi.org/10.1016/j.techsoc.2019.101212
  32. H. E. Buysse et al. Introducing telemonitoring for diabetic patients: development of a telemonitoring 'Health Effect and Readiness' questionnaire. international journal of medical informatics 2010; 79(8): 576-584. https://doi.org/10.1016/j.ijmedinf.2010.05.005
  33. Lee, S. W., Sung, H. J., & Jeon, H. M. Determinants of continuous intention on food delivery apps: extending UTAUT2 with information quality. Sustainability, 2019; 11(11): 3141. https://doi.org/10.3390/su11113141
  34. C.-L. Hsu and J. C.-C. Lin. Effect of perceived value and social influences on mobile app stickiness and in-app purchase intention. Technological Forecasting and Social Change 2016;108: 42-53. https://doi.org/10.1016/j.techfore.2016.04.012
  35. Y. Rosseel et al. Package 'lavaan'. Retrieved 2017 June; vol.17.
  36. J. C. Nunnally, I. H. Bernstein, and J. M. t. Berge. Psychometric theory. McGraw-hill New York, 1967.
  37. W. W. Chin. Commentary: Issues and opinion on structural equation modeling. ed: JSTOR. 1998.
  38. W. W. Chin. The partial least squares approach to structural equation modeling. Modern methods for business research 1998;295(2): 295-336.
  39. C. Fornell and D. F. Larcker. Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research 1981;39-50.
  40. S. Kim and G. Garrison. Investigating mobile wireless technology adoption: An extension of the technology acceptance model. Information Systems Frontiers 2009;11(3): 323-333. https://doi.org/10.1007/s10796-008-9073-8
  41. Hubert, M., Blut, M., Brock, C., Zhang, R. W., Koch, V., & Riedl, R. The influence of acceptance and adoption drivers on smart home usage. European Journal of Marketing 2019
  42. Jaklic, J., Grubljesic, T., & Popovic, A. The role of compatibility in predicting business intelligence and analytics use intentions. International Journal of Information Management 2-18; 43: 305-318. https://doi.org/10.1016/j.ijinfomgt.2018.08.017
  43. Kamal, S. A., Shafiq, M., & Kakria, P. Investigating acceptance of telemedicine services through an extended technology acceptance model (TAM). Technology in Society 2020; 60: 101212. https://doi.org/10.1016/j.techsoc.2019.101212
  44. Wu, Long, and Jian-Liang Chen. An extension of trust and TAM model with TPB in the initial adoption of on-line tax: an empirical study. International Journal of Human-Computer Studies 2005;62(6):784-808. https://doi.org/10.1016/j.ijhcs.2005.03.003
  45. J. Sandberg et al. A qualitative study of the experiences and satisfaction of direct telemedicine providers in diabetes case management. Telemedicine and e-Health 2009;15(8): 742-750. https://doi.org/10.1089/tmj.2009.0027
  46. A. Martinez, E. Everss, J. L. Rojo-Alvarez, D. P. Figal, and A. Garcia-Alberola. A systematic review of the literature on home monitoring for patients with heart failure. Journal of telemedicine and telecare 2006;12(5): 234-241. https://doi.org/10.1258/135763306777889109
  47. E. J. Lanseng and T. W. Andreassen. Electronic healthcare: a study of people's readiness and attitude toward performing self-diagnosis. International Journal of Service Industry Management 2007;18(4):394-417. https://doi.org/10.1108/09564230710778155
  48. Y.-Y. Shih. The effect of computer self-efficacy on enterprise resource planning usage. Behaviour & Information Technology 2006;25(5):407-411. https://doi.org/10.1080/01449290500168103
  49. Q. Ma, A. H. Chan, and K. Chen. Personal and other factors affecting acceptance of smartphone technology by older Chinese adults. Applied ergonomics 2016;54: 62-71. https://doi.org/10.1016/j.apergo.2015.11.015
  50. Y. Y. Mun, J. D. Jackson, J. S. Park, and J. C. Probst. Understanding information technology acceptance by individual professionals: Toward an integrative view. Information & Management 2006; 43(3): 350-363. https://doi.org/10.1016/j.im.2005.08.006
  51. Chao, C. M. Factors determining the behavioral intention to use mobile learning: An application and extension of the UTAUT model. Frontiers in psychology 2019; 10: 1652. https://doi.org/10.3389/fpsyg.2019.01652
  52. A. Sunyaev, T. Dehling, P. L. Taylor, and K. D. Mandl. Availability and quality of mobile health app privacy policies. Journal of the American Medical Informatics Association 2014;22(e1):e28-e33. https://doi.org/10.1136/amiajnl-2013-002605
  53. Kim, B. G., Lee, C. H., Jeon, M. J., & Lee, M. H. Development of a residential treatment program for smart-phone addicted adolescent. The Korea Journal of Youth Counseling 2016; 24(2): 37-57. https://doi.org/10.35151/kyci.2016.24.2.003
  54. Kyoung, S. K., & Kim, J. W. A study on smart-phone addiction in teenager: Focused on comparison smart-phone overdependence, game addiction, SNS addiction. Studies on Life and Culture 2019; 52(1).
  55. Rho, M. J., Park, J., Na, E., Jeong, J. E., Kim, J. K., Kim, D. J., & Choi, I. Y. Types of problematic smartphone use based on psychiatric symptoms. Psychiatry research 2019; 275: 46-52. https://doi.org/10.1016/j.psychres.2019.02.071
  56. Park, J., Jeong, J. E., yeon Park, S., & Rho, M. J. Development of the smartphone addiction risk rating score for a smartphone addiction management application. Frontiers in public health 2020; 8.
  57. Hwang, J., Lee, J. S., & Kim, H. Perceived innovativeness of drone food delivery services and its impacts on attitude and behavioral intentions: The moderating role of gender and age. International Journal of Hospitality Management 2019;81:94-103. https://doi.org/10.1016/j.ijhm.2019.03.002