DOI QR코드

DOI QR Code

Anti-obesogenic Effect of Brassica juncea Extract on Bisphenol-A Induced Adipogenesis of 3T3-L1 Cells

비스페놀 A (Bisphenol-A)로 유도된 지방세포 분화에 미치는 갓 추출물의 항오비소겐 효과

  • Lee, Se-jeong (Department of Food Biotechnology and Environmental Science, Kangwon National University) ;
  • Na, Uoon-Joo (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Choi, Sun-Il (Department of Food Biotechnology and Environmental Science, Kangwon National University) ;
  • Han, Xionggao (Department of Food Biotechnology and Environmental Science, Kangwon National University) ;
  • Men, Xiao (Department of Food Biotechnology and Environmental Science, Kangwon National University) ;
  • Lee, Youn Hwan (Channnri Life Co. Ltd.) ;
  • Kim, Hyun Duk (Channnri Life Co. Ltd.) ;
  • Kim, Yoon Jung (Channnri Life Co. Ltd.) ;
  • Lee, Ok-Hwan (Department of Food Biotechnology and Environmental Science, Kangwon National University)
  • 이세정 (강원대학교 식품환경융합학과) ;
  • 나윤주 (강원대학교 바이오산업공학부 식품생명공학전공) ;
  • 최선일 (강원대학교 식품환경융합학과) ;
  • 한웅호 (강원대학교 식품환경융합학과) ;
  • 문효 (강원대학교 식품환경융합학과) ;
  • 이윤환 ((주)찬누리라이프) ;
  • 김현덕 ((주)찬누리라이프) ;
  • 김윤정 ((주)찬누리라이프) ;
  • 이옥환 (강원대학교 식품환경융합학과)
  • Received : 2021.10.21
  • Accepted : 2021.11.12
  • Published : 2021.12.30

Abstract

The purpose of the study was to investigate the content of sinigrin, an index component, in Brassica juncea extract and to evaluate the differentiation of lipocytes, inhibition of production of reactive oxygen species (ROS) and reduction of protein production by lipogenic factors (PPARγ, C/EBPα, aP2) in the processing of Brassica juncea extract and sinigrin in 3T3-L1 preadipocytes which induces Bisphenol A (BPA), an endocrine disrupting environmental hormone. From the investigation, the content of sinigrin in Brassica juncea extract, measured by HPLC, is found to be 21.27±0.2 mg/g. The XTT assay result on BPA-derived 3T3-L1 adipocytes shows there is no cytotoxicity found from 180 µM of sinigrin and 300 ㎍/mL of Brassica juncea extract. Moreover, both intracellular lipid accumulation and ROS production during differentiation of lipocyte are significantly reduced in cells processed with Brassica juncea extract and sinigrin. Lastly, it was also found that the production of transcription factors of lipocyte differentiation, PPARγ, C/EBPα and aP2, were found to be suppressed by the application of Brassica juncea extract and sinigrin. Such results reveals that Brassica juncea is effective in not only suppressing lipid accumulation in the environmental hormone bisphenol A-derived lipocyte, but also in reducing the ROS. The sinigrin-containing Brassica juncea is highly expected to be used in natural functional supplements that prevents the lipid metabolism disorders caused by BPA. There are necessities for additional clinical research and follow-up studies on the in vivo model to verify the relevant mechanisms.

본 연구는 십자화과 채소인 갓(Brassica juncea) 추출물을 이용하여 지표성분인 sinigrin의 함량을 분석하고, 내분비계 교란물질 환경호르몬인 비스페놀 A (BPA)로 분화를 유도한 3T3-L1 전구지방세포에서 갓 추출물과 sinigrin 처리에 대한 지방세포 분화 및 활성산소종(ROS) 생성 억제, 지방 생성 전사인자(PPARγ, C/EBPα, aP2)의 단백질 발현 감소 효능을 평가하였다. 연구 결과에 따르면 HPLC를 이용하여 측정한 갓 추출물 중 sinigrin의 함량은 21.27±0.2 mg/g 인 것으로 나타났다. BPA로 유도된 3T3-L1 전구지방세포에서 XTT assay 결과 sinigrin 180 µM 및 갓 추출물 300 ㎍/mL 농도에서 세포 독성을 보이지 않았으며, 지방세포 분화과정 중 세포 내 지방 축적량과 ROS 생성량을 비교하였을 때 갓과 sinigrin을 처리한 지방세포의 경우 지방축적량 및 ROS 생성량 모두 유의적으로 감소시키는 것으로 나타났다. 또한, 갓 추출물 및 sinigrin을 처리하였을 때 지방세포 분화를 조절하는 전사인자 PPARγ, C/EBPα 및 aP2의 발현이 억제됨을 확인하였다. 이 결과를 통해 갓은 환경호르몬 비스페놀 A로 유도된 지방세포 내 지방 축적 억제와 더불어 ROS 저감에 효과적으로 작용함을 확인하였다. 향후 sinigrin을 함유한 갓은 BPA로 인한 지질 대사 장애를 예방하는 천연물 유래 기능성 식품 소재로 활용할 가능성이 높은 것으로 기대되며, 추가로 임상 연구 및 작용기전 입증을 위한 in vivo 모델에서의 후속 연구가 진행되어야 할 것으로 사료된다.

Keywords

Acknowledgement

본 논문은 2020년도 중소벤처기업부의 중소기업기술개발사업 지원(S2958838)과 한국연구재단의 지원(NRF-2017R1D1A3B06028469)을 받아 수행된 연구로 이에 감사드립니다.

References

  1. Spiegelman, B.M., Flier, J.S., Obesity and the regulation of energy balance. Cell, 104, 531-543 (2001). https://doi.org/10.1016/S0092-8674(01)00240-9
  2. Kim, M.K., Park, J.H., Metabolic syndrome. J. Korean Med. Assoc., 55, 1005-1013 (2012). https://doi.org/10.5124/jkma.2012.55.10.1005
  3. Liu, F., Kim, J.K., Li, Y., Liu, X.Q., Li, J., Chen, X., An extract of Lagerstroemia speciosa L. has insulin-like glucose uptake-stimulatory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells. J. Nutr., 131, 2242-2247 (2001). https://doi.org/10.1093/jn/131.9.2242
  4. Rosen, E.D., Hsu, C.H., Wang, X., Sakai, S., Freeman, M.W., Gonzalez, F.J., Spiegelman, B.M., C/EBPα induces adipogenesis through PPARγ: a unified pathway. Genes Dev., 16, 22-26 (2002). https://doi.org/10.1101/gad.948702
  5. Kim, K.H., Perspective in regulation of adipogenesis by bioactive food components. Food Sci. Ind., 42, 51-57 (2009). https://doi.org/10.23093/FSI.2009.42.4.51
  6. Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T.D., Mazur, M., Telser, J., Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 39, 44-84 (2007). https://doi.org/10.1016/j.biocel.2006.07.001
  7. Baillie-Hamilton, P.F., Chemical toxins: a hypothesis to explain the global obesity epidemic. J. Altern. Complement. Med., 8, 185-192 (2002). https://doi.org/10.1089/107555302317371479
  8. Nappi, F., Barrea, L., Di Somma, C., Savanelli, M.C., Muscogiuri, G., Orio, F., Savastano, S., Endocrine aspects of environmental "Obesogen" pollutants. Int. J. Environ. Res. Public Health, 13, 765 (2016). https://doi.org/10.3390/ijerph13080765
  9. Metwally, F.M., Mohamed, M.M., Sharaf, N.E., Ghazy, M.A., El Mishad, A.M., Elfiky, A., The Impact of bisphenol A (BPA) as environmental obesogen on lipids and lipids metabolism. Int. J. Pharm. Clin. Res., 8, 1323-1330 (2016).
  10. De Filippis, E., Li, T., Rosen, E.D., Exposure of adipocytes to bisphenol-A in vitro interferes with insulin action without enhancing adipogenesis. PLoS One, 13, e0201122 (2018). https://doi.org/10.1371/journal.pone.0201122
  11. Jirtle, R.L., Skinner, M.K., Environmental epigenomics and disease susceptibility. Nat. Rev. Genet., 8, 253-262 (2007). https://doi.org/10.1038/nrg2045
  12. Legeay, S., Faure, S., Is bisphenol A an environmental obesogen?. Fundam. Clin. Pharmacol., 31, 594-609 (2017). https://doi.org/10.1111/fcp.12300
  13. Choi, S.I., Lee, J.S., Lee, S., Sim, W.S., Kim, Y.C., Lee, O.H., Potentilla rugulosa Nakai extract attenuates Bisphenol A-, S- and F-Induced ROS production and differentiation of 3T3-L1 preadipocytes in the absence of dexamethasone. Antioxidants, 9, 113 (2020). https://doi.org/10.3390/antiox9020113
  14. Karri, S., Sharma, S., Hatware, K., Patil, K., Natural antiobesity agents and their therapeutic role in management of obesity: A future trend perspective. Biomed Pharmacother, 110, 224-238 (2019). https://doi.org/10.1016/j.biopha.2018.11.076
  15. Park, H.J., Han, Y.S., Effect of mustard leaf on quality and sensory characteristics of Kimchi. J. Korean Soc. Food Sci Nutr., 23, 618-624 (1994).
  16. Kwon, H.Y., Choi, S.I., Cho, B.Y., Choi, S.H., Sim, W.S., Han, X., Jang, G.W., Choi, Y.E., Yeo, J.H., Cho, J.H., Lee, O.H., Analysis of nutritional components and cell-based antioxidant activity on Brassica juncea cultivated in Jeongseon, South Korea. Korean J. Food Nutr., 32, 462-472 (2019).
  17. Popova, I.E., Morra, M.J., Simultaneous quantification of sinigrin, sinalbin, and anionic glucosinolate hydrolysis products in Brassica juncea and sinapis alba seed extracts using ion chromatography. J. Agric. Food Chem., 62, 10687-10693 (2014). https://doi.org/10.1021/jf503755m
  18. Talalay, P., Fahey, J.W., Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J. Nutr., 131, 3027S-3033S (2001). https://doi.org/10.1093/jn/131.11.3027S
  19. Blazevic, I., Radonic, A., Mastelic, J., Marina, Z., Skocibusic, M., Maravic, A., Glucosinolates, glycosidically bound volatiles and antimicrobial activity of Aurinia sinuata (Brassicaceae). Food Chem., 121, 1020-1028 (2010). https://doi.org/10.1016/j.foodchem.2010.01.041
  20. Oh, S.K., Kim, K.W., Bea, S.O., Choi, M.R., Sinigrin content of different parts of Dolsan leaf mustard. Korean J. Food Preserv., 22, 553-558 (2015). https://doi.org/10.11002/KJFP.2015.22.4.553
  21. Wang, T., Liang, H., Yuan, Q., Optimization of ultrasonic-stimulated solvent extraction of sinigrin from Indian mustard seed (Brassica Juncea L.) using response surface methodology. Phytochem Anal, 22, 205-213 (2011). https://doi.org/10.1002/pca.1266
  22. Lee, H.W., Rhee, D.K., Kim, B.O., Pyo, S., Inhibitory effect of sinigrin on adipocyte differentiation in 3T3-L1 cells: Involvement of AMPK and MAPK pathways. Biomed. Pharmacother., 102, 670-680 (2018). https://doi.org/10.1016/j.biopha.2018.03.124
  23. Lee, Y.J., Yoon, B.R., Choi, H.S., Lee, B.Y., Lee, O.H., Effect of Sargassum micracanthum extract on lipid accumulation and reactive oxygen species (ROS) production during differentiation of 3T3-L1 preadipocytes. Korean J. Food Preserv., 19, 455-461 (2012). https://doi.org/10.11002/KJFP.2012.19.3.455
  24. Oh, J.W., Lee, J.H., Lee, O.H., Kim, K.H., Kim, H.R., Lee, H.K., Effect of hot water and ethanol extracts from Nelumbo nucifera Gaertner flower on lipid accumulation and reactive oxygen species (ROS) production in adipogenesis of 3T3-L1 cells. Korean J. Food Preserv., 22, 744-750 (2015). https://doi.org/10.11002/KJFP.2015.22.5.744
  25. Kwon, H.Y., Choi, S.I., Han, X., Men, X., Jang, G.W., Choi, Y.E., Lee, O.H., Antiobesity effect of Brassica juncea cultivated in Jeongseon with optimized sinigrin content using 3T3-L1 adipocytes. J. Food Biochem., 45, e13650 (2021).
  26. Kwon, H.Y., Choi, S.I., Park, H.I., Choi, S.H., Sim, W.S., Yeo, J.H., Cho, J.H., Lee, O.H., Comparative analysis of the nutritional components and antioxidant activities of different Brassica juncea cultivars. Foods, 9, 840 (2020). https://doi.org/10.3390/foods9060840
  27. Seo, K.I., Park, S.K., Park, J.R., Kim, H.C., Choi, J.S., Shim, K.H., Changes in antimicrobial activity of hydrolyzate from mustard seed (Brassica juncea). J. Korean Soc. Food Sci. Nutr., 25, 129-134 (1996).
  28. Choi, M.R., Yoo, E.J., Song, S.H., Kang, D.S., Park, J.C., Lim, H.S., Comparison of physiological activity in different parts of Dolsan leaf mustard. J. Korean Soc. Food Sci. Nutr., 30, 721-725 (2001).
  29. Blumberg, J.M., Tzameli, I., Astapova, I., Lam, F.S., Flier, J.S., Hollenberg, A.N., Complex role of the vitamin D receptor and its ligand in adipogenesis in 3T3-L1 cells. J. Biol. Chem., 281, 11205-11213 (2006). https://doi.org/10.1074/jbc.M510343200
  30. Galic, S., Oakhill, J.S., Steinberg, G.R., Adipose tissue as an endocrine organ. Mol. Cell. Endocrinol., 316, 129-139 (2010). https://doi.org/10.1016/j.mce.2009.08.018
  31. Vazquez-Vela, M.E.F., Torres, N., Tovar, A.R., White adipose tissue as endocrine organ and its role in obesity. Arch. Med. Res., 39, 715-728 (2008). https://doi.org/10.1016/j.arcmed.2008.09.005
  32. Wu, Z., Puigserver, P., Spiegelman, B.M., Transcriptional activation of adipogenesis. Curr. Opin. Cell Biol., 11, 689-694 (1999). https://doi.org/10.1016/S0955-0674(99)00037-X
  33. Fox, K.E., Fankell, D.M., Erickson, P.F., Majka, S.M., Crossno, J.T., Klemm, D.J., Depletion of cAMP-response element-binding protein/ATF1 inhibits adipogenic conversion of 3T3-L1 cells ectopically expressing CCAAT/enhancer-binding protein (C/EBP) α, C/EBP β, or PPARγ2. Journal of Biological Chemistry, 281, 40341-40353 (2006). https://doi.org/10.1074/jbc.M605077200
  34. Wang, N.D., Finegold, M.J., Bradley, A., Ou, C.N., Abdelsayed, S.V., Wilde, M.D., Taylor, L.R., Wilson, D.R., Darlington, G.J., Impaired energy homeostasis in C/EBP alpha knockout mice. Science, 269, 1108-1112 (1995). https://doi.org/10.1126/science.7652557