DOI QR코드

DOI QR Code

Effect of Ammonia Load on Microbial Communities in Mesophilic Anaerobic Digestion of Propionic Acid

암모니아 부하에 따른 프로피온산 중온 혐기성 소화 미생물 군집 변동 조사

  • Trang, Le Thi Nhu (Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University) ;
  • Lee, Joonyeob (Department of Environmental Engineering, Pukyong National University)
  • ;
  • 이준엽 (부경대학교 환경공학과)
  • Received : 2021.10.28
  • Accepted : 2021.12.02
  • Published : 2021.12.31

Abstract

The present study investigated the effect of ammonia load on microbial communities in mesophilic anaerobic digestion of propionic acid. A laboratory-scale continuous anaerobic digester treating propionic acid as a sole organic substrate was operated under non-inhibitory condition and inhibitory conditions with ammonia (1.5 g and 3.5 g ammonia-N/L, respectively), and bacterial and archaeal communities in the steady states of each ammonia condition were analyzed using high-throughput sequencing. Thirteen bacterial families were detected as abundant bacterial groups in mesophilic anaerobic digestion of propionic acid. Increase in ammonia concentration resulted in significant shifts in microbial community structures. Syntorophobacter, Pelotomaculum, and Thermovigra were determined as the dominant groups of (potential) propionate oxidizing bacteria in the non-inhibitory condition, whereas Cryptanaerobacter and Aminobacterium were the dominant groups of (potential) propionate oxidizing bacteria in the ammonia-inhibitory condition. Methanoculleus and Methanosaeta were the dominant methanogens. Acetate-oxidation coupled with hydrogenotrophic methanogenesis might be enhanced with increases in the relative abundances of Methanoculleus and Tepidanaerobacter acetatoxydans under the ammonia-inhibitory condition. The results of the present study could be a valuable reference for microbial management of anaerobic digestion systems that are exposed to ammonia inhibition and propionic acid accumulation.

Keywords

Acknowledgement

본 연구는 환경부의 폐자원에너지화 전문인력양성사업으로 지원되었습니다(YL-WE-21-002). 또한 이 성과는 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(No. 2021R1C1C1009122). 또한 이 논문은 2020학년도 부경대학교의 지원을 받아 수행된 연구입니다(CD20200844).

References

  1. Ahring, B. K., Sandberg, M., Angelidaki, I., 1995, Volatile fatty acids as indicators of process imbalance in anaerobic digestors, Appl. Microbiol. and Biotechnol., 43, 559-565. https://doi.org/10.1007/BF00218466
  2. Angelidaki, I., Ahring, B. K., 1993, Thermophilic anaerobic digestion of livestock waste: the effect of ammonia, Appl. Microbiol. and Biotechnol., 38, 560-564. https://doi.org/10.1007/BF00242955
  3. Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., Kalyuzhnyi, S., Jenicek, P., van Lier, J. B., 2009, Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays, Water Sci. and Technol., 59, 927-934. https://doi.org/10.2166/wst.2009.040
  4. Carballa, M., Regueiro, L., Lema, J. M., 2015, Microbial management of anaerobic digestion: exploiting the microbiome-functionality nexus, Curr. Opin. Biotechnol., 33, 103-111. https://doi.org/10.1016/j.copbio.2015.01.008
  5. Chen, S., Liu, X., Dong, X., 2005, Syntrophobacter sulfatireducens sp. nov., a novel syntrophic, propionate-oxidizing bacterium isolated from UASB reactors, Int. J. Syst. Evol. Microbiol., 55, 1319-1324. https://doi.org/10.1099/ijs.0.63565-0
  6. Chen, Y., Cheng, J. J., Creamer, K. S., 2008, Inhibition of anaerobic digestion process: A review, Bioresour. Technol., 99, 4044-4064. https://doi.org/10.1016/j.biortech.2007.01.057
  7. Cho, K., Lee, J., Kim, W., Hwang, S., 2013, Behavior of methanogens during start-up of farm-scale anaerobic digester treating swine wastewater, Process Biochem., 48, 1441-1445. https://doi.org/10.1016/j.procbio.2013.04.016
  8. Fukuzaki, S., Nishio, N., Shobayashi, M., Nagai, S., 1990, Inhibition of the Fermentation of Propionate to Methane by Hydrogen, Acetate, and Propionate, Appl. Environ. Microbiol., 56, 719-723. https://doi.org/10.1128/aem.56.3.719-723.1990
  9. Imachi, H., Sakai, S., Ohashi, A., Harada, H., Hanada, S., Kamagata, Y., Sekiguchi, Y., 2007, Pelotomaculum propionicicum sp. nov., an anaerobic, mesophilic, obligately syntrophic, propionate-oxidizing bacterium, Int. J. Syst. Evol. Microbiol., 57, 1487-1492. https://doi.org/10.1099/ijs.0.64925-0
  10. Lee, J., Kim, E., Han, G., Tongco, J. V., Shin, S. G., Hwang, S., 2018, Microbial communities underpinning mesophilic anaerobic digesters treating food wastewater or sewage sludge: A full-scale study, Bioresour. Technol., 259, 388-397. https://doi.org/10.1016/j.biortech.2018.03.052
  11. Lee, J., Koo, T., Yulisa, A., Hwang, S., 2019, Magnetite as an enhancer in methanogenic degradation of volatile fatty acids under ammonia-stressed condition, J. Environ. Manage., 241, 418-426. https://doi.org/10.1016/j.jenvman.2019.04.038
  12. Lee, J., Shin, S. G., Han, G., Koo, T., Hwang, S., 2017, Bacteria and archaea communities in full-scale thermophilic and mesophilic anaerobic digesters treating food wastewater: Key process parameters and microbial indicators of process instability, Bioresour. Technol., 245, 689-697. https://doi.org/10.1016/j.biortech.2017.09.015
  13. Narihiro, T., Nobu, M. K., Kim, N. K., Kamagata, Y., Liu, W. T., 2015, The nexus of syntrophy-associated microbiota in anaerobic digestion revealed by long-term enrichment and community survey, Environ. Microbiol., 17, 1707-1720. https://doi.org/10.1111/1462-2920.12616
  14. Singh, A., Schnurer, A., Westerholm, M., 2021, Enrichment and description of novel bacteria performing syntrophic propionate oxidation at high ammonia level, Environ. Microbiol., 23, 1620-1637. https://doi.org/10.1111/1462-2920.15388
  15. Spellerberg, I. F., Fedor, P. J., 2003, A Tribute to Claude Shannon (1916-2001) and a plea for more rigorous use of species richness, species diversity and the 'Shannon-Wiener' Index, Glob. Ecol. Biogeogr., 12, 177-179. https://doi.org/10.1046/j.1466-822X.2003.00015.x
  16. Wang, H. Z., Lv, X. M., Yi, Y., Zheng, D., Gou, M., Nie, Y., Hu, B., Nobu, M. K., Narihiro, T., Tang, Y. Q., 2019, Using DNA-based stable isotope probing to reveal novel propionate- and acetate-oxidizing bacteria in propionate-fed mesophilic anaerobic chemostats, Sci. Rep., 9, 17396. https://doi.org/10.1038/s41598-019-53849-0
  17. Westerholm, M., Roos, S., Schnurer, A., 2011, Tepidanaerobacter acetatoxydanssp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from two ammonium-enriched mesophilic methanogenic processes, Syst. Appl. Microbiol., 34, 260-266. https://doi.org/10.1016/j.syapm.2010.11.018
  18. Williams, J., Williams, H., Dinsdale, R., Guwy, A., Esteves, S., 2013, Monitoring methanogenic population dynamics in a full-scale anaerobic digester to facilitate operational management, Bioresour. Technol., 140, 234-242. https://doi.org/10.1016/j.biortech.2013.04.089