DOI QR코드

DOI QR Code

Effects of Aerobic Granular Sludge Separator on the Stability of Aerobic Granular Sludge (AGS)

호기성 그래뉼 슬러지 선별 분리기가 호기성 그래뉼 슬러지의 안정성에 미치는 영향

  • Received : 2021.10.13
  • Accepted : 2021.12.03
  • Published : 2021.12.31

Abstract

In this study, the effect on the stability of Aerobic Granular Sludge (AGS) caused by an AGS separator was investigated. The AGS separator was a hydrocyclone. The main factors of the AGS separator were filter pore size (0.125~0.600 mm), conical-to-cylindrical ratio (1.5~3.0), and operating time (1~20 min). The AGS/mixed liquor suspended solid (MLSS) ratio gradually increased to 0.500 mm (AGS/MLSS: 84.3±3.0%). AGS was best separated at the conical-to-cylindrical ratio of 2.5 (AGS/MLSS: 84.7±3.3%). As the operating time increased, the AGS separation performance also tended to increase. The shortest AGS separator run time, but the highest AGS separation performance was 10 min (87.0±2.5%). AGS stability was evaluated by operating the selected AGS separator and sequencing batch reactor. The average removal efficiencies of TOC, TCODCr, SS, TN, and TP were 95.7%, 96.9%, 93.0%, 89.0%, and 96.2%, respectively, which met the effluent standards in Korea. In addition, the AGS/MLSS ratio tended to remain constant, and the sludge volume index demonstrated a tendency to decrease from 140 mL/g to 70 mL/g. During the operation, the particles of AGS in optical microscope observations gradually increased.

Keywords

Acknowledgement

본 논문은 경기도 기술개발사업의 사업비지원(과제번호: D2020152)에 의해 수행되었습니다.

References

  1. Adav, S. S., Lee, D. J., Show, K. Y., Tay, J. H., 2008, Aerobic granular sludge: recent advances, Biotechnol. Adv., 26, 411-423. https://doi.org/10.1016/j.biotechadv.2008.05.002
  2. American Public Health Association (APHA), 2008, Standard methods for the examination of water and wastewater, 21st edition, American public health association, Washington D.C., USA.
  3. Campo, R., Lubello, C., Lotti, T., Di Bella, G., 2021, Aerobic granular-sludge membrane bioReactor (AGS-MBR) as a novel configuration for wastewater treatment and fouling mitigation: A mini-review, Memb., 11(4), 261. https://doi.org/10.3390/membranes11040261
  4. de Kreuk, M. K., 2006, Aerobic granular sludge: scaling up a new technology, Ph. D. Dissertation, Delft University of Technology.
  5. de Kreuk, M. K., Heijnen, J. J., van Loosdrecht, M. C. M., 2005, Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge, Biotechnol. Bioeng., 90, 761-769. https://doi.org/10.1002/bit.20470
  6. de Sousa Rollemberg, S. L., Barros, A. R. M., Firmino, P. I. M., Dos Santos, A. B., 2018, Aerobic granular sludge: cultivation parameters and removal mechanisms, Bioresour. Technol,, 270, 678-688. https://doi.org/10.1016/j.biortech.2018.08.130
  7. Fontein, F., Van Kooy, J. and Leniger, H., 1962, The influence of some variables upon hydrocyclone performance, Brit. Chem. Engng., 7, 410-420.
  8. Haaksman, V. A., Mirghorayshi, M., Van Loosdrecht, M. C. M., Pronk, M., 2020, Impact of aerobic availability of readily biodegradable COD on morphological stability of aerobic granular sludge, Water Res., 187, 116402. https://doi.org/10.1016/j.watres.2020.116402
  9. Hwang, K. J., Chou, S. P., 2017, Designing vortex finder structure for improving the particle separation efficiency of a hydrocyclone, Sep. Purif. Technol., 172: 76-84. https://doi.org/10.1016/j.seppur.2016.08.005
  10. Kim, H. G., Ahn, D. H., 2019a, Effects of different hydraulic retention times on contaminant removal efficiency using aerobic granular sludge, Kor. Soc. Environ. Eng., 28, 669-676.
  11. Kim, H. G., Ahn, D. H., 2019b, Study on the biological denitrification reaction of high-salinity wastewater using an aerobic granular sludge (AGS), Kor. Soc. Environ. Eng., 28, 607-615.
  12. Kim, H. G., Ahn, D. H., 2019c, Effects on microbial activity of aerobic granular sludge (AGS) in high-salinity wastewater, Kor. Soc. Environ. Eng., 28, 629-637.
  13. Kim, S. M., Jang, A., Chae, G. J., Yoo, H. W., Kim, I. S., 2008, Aerobic granulation in SBR for enhanced biological nutrient removal and application of phosphate solid-state Ion-selective microelectrode to characterize phosphorus removal, Kor. Soc. Environ. Eng. academic presentation papers, 2015-218.
  14. Khan, M. Z., Mondal, P. K., Sabr, S., 2013, Aerobic granulation for wastewater bioremediation: A review, Can. J. Chem. Eng., 91, 1045-1058. https://doi.org/10.1002/cjce.21729
  15. Lee, Y. G., Chon, H. N., Gin, H. Y., Lee, J. H., Moon, J. S., Lee, J. S., Ye, H. Y., Ahn, D. H., Ryu, J. H., 2016, Aerobic granular sludge separator device, Korea Patent, 10-1613711.
  16. Li, X., Luo, J., Guo, G., Mackey, H. R., Hao, T., Chen, G., 2017, Seawater-based wastewater accelerates development of aerobic granular sludge: A laboratory proof-of-concept, Water Res., 115, 210-219. https://doi.org/10.1016/j.watres.2017.03.002
  17. Nan, J., Yao, M., Li, Q., Zhan, D., Chen, T., Wang, Z., Li, H,. 2016, The role of shear conditions on floc characteristics and membrane fouling in coagulation/ultrafiltration hybrid process-the effect of flocculation duration and slow shear force. RSC advances, 6, 163-173. https://doi.org/10.1039/C5RA18328F
  18. Nancharaiah, Y. V., Sarvajith, M., 2019. Aerobic granular sludge process: a fast growing biological treatment for sustainable wastewater treatment, Current Opinion in Environ. Sci. Health, 12, 57-65. https://doi.org/10.1016/j.coesh.2019.09.011
  19. Ni, L., Tian, J., Zhao, J., 2016. Experimental study of the effect of underflow pipe diameter on separation performance of a novel defoulant hydrocyclone with continuous underflow and reflux function, Sep. Purif. Technol., 171, 270-279. https://doi.org/10.1016/j.seppur.2016.07.047
  20. Ni, L., Tian, J., Song, T., Jong, Y., Zhao, J., 2019, Optimizing geometric parameters in hydrocyclones for enhanced separations: a review and perspective, Sep. Purif. Technol. Reviews, 48, 30-51. https://doi.org/10.1080/15422119.2017.1421558
  21. Pan, S., Tay, J. H., He, Y. X., Tay, S. T. L., 2004, The effect of hydraulic retention time on the stability of aerobically grown microbial granules, Lett. Appl. Microbiol., 38, 158-163. https://doi.org/10.1111/j.1472-765X.2003.01479.x
  22. Pronk, M., De Kreuk, M. K., De Bruin, B., Kamminga, P., Kleerebezem, R. V., Van Loosdrecht, M. C. M., 2015, Full scale performance of the aerobic granular sludge process for sewage treatment, Water Res., 84, 207-217. https://doi.org/10.1016/j.watres.2015.07.011
  23. Purba, L. D. A., Ibiyeye, H. T., Yuzir, A., Mohamad, S. E., Iwamoto, K., Zamyadi, A., Abdullah, N., 2020, Various applications of aerobic granular sludge: A review, Environ. Technol. Innovation, 101045.
  24. Schwarzenbeck, N., Erley, R., Wilderer, P. A., 2004. Aerobic granular sludge in an SBR-system treating wastewater rich in particulate matter, Water Sci. Technol., 49, 41-46. https://doi.org/10.2166/wst.2004.0799
  25. Sguanci, S., Lubello, C., Caffaz, S., Lotti, T., 2019, Long-term stability of aerobic granular sludge for the treatment of very low-strength real domestic wastewater, J. Clean. Prod., 222, 882-890. https://doi.org/10.1016/j.jclepro.2019.03.061
  26. Sheik, A. R., Muller, E. E. L., Wilmes, P., 2014, A Hundred years of activated sludge: time to rethink, Front. Microbiol., 5, 47. https://doi.org/10.3389/fmicb.2014.00047
  27. Silva, D. O., Vieira, L. G. M. Barrozo, M. A. S., 2015, Optimization of design and performance of solid-liquid separators: a thickener hydrocyclone, Chem. Eng. Technol., 38, 319-326. https://doi.org/10.1002/ceat.201300464
  28. Svarovsky, L., 1984, Hydrocyclones; Technomic Publishing Co: London., 79-89.
  29. Szabo, E., Hermansson, M., Modin, O., Persson, F., Wilen, B. M., 2016, Effects of wash-out dynamics on nitrifying bacteria in aerobic granular sludge during start-up at gradually decreased settling time, Water, 8, 172. https://doi.org/10.3390/w8050172
  30. Vashi, H., Iorhemen, O. T., Tay, J. H., 2019, Extensive studies on the treatment of pulp mill wastewater using aerobic granular sludge (AGS) technology. Chem. Eng. J., 359, 1175-1194. https://doi.org/10.1016/j.cej.2018.11.060
  31. Wang, S., Ma, X., Wang, Y., Du, G., Tay, J., Li, J., 2019. Piggery wastewater treatment by aerobic granular sludge: Granulation process and antibiotics and antibiotic-resistant bacteria removal and transport, Bioresour. Technol., 273, 350-357. https://doi.org/10.1016/j.biortech.2018.11.023
  32. Welling, C., Kennedy, A., Wett, B., Johnson, C., Rutherford, B., Baumler, R., Bott, C., 2015. Improving settleability and enhancing biological phosphorus removal through the implementation of hydrocyclones, Proceedings of the Water Environment Federation, 6171-6179.
  33. Xu, J., Sun, Y., Liu, Y., Yuan, W., Dai, L., Xu, W., Wang, H., 2019, In-situ sludge settleability improvement and carbon reuse in SBR process coupled with hydrocyclone, Sci. Total Environ., 695, 133825. https://doi.org/10.1016/j.scitotenv.2019.133825
  34. Yamamoto, T., Oshikawa, T., Yoshida, H., Fukui, K., 2016, Improvement of particle separation performance by new type hydrocyclone, Sep. Purif. Technol., 158, 223-229. https://doi.org/10.1016/j.seppur.2015.12.020
  35. Yang, C., Zhang, W., Liu, R., Li, Q., Li, B., Wang, S., Song, C., Qiao, C., Mulchandani, A., 2011, Phylogenetic diversity and metabolic potential of activated sludge microbial communities in full-scale wastewater treatment plants, Environ, sci, technol., 45, 7408-7415. https://doi.org/10.1021/es2010545
  36. Zhang, W., Jiang, F., 2019, Membrane fouling in aerobic granular sludge (AGS)-membrane bioreactor (MBR): Effect of AGS size, Water Res., 157, 445-453. https://doi.org/10.1016/j.watres.2018.07.069
  37. Zhou, J. H., Zhang, Z. M., Zhao, H., Yu, H. T., Alvarez, P. J., Xu, X. Y., Zhu, L., 2016, Optimizing granules size distribution for aerobic granular sludge stability: effect of a novel funnel-shaped internals on hydraulic shear stress, Bioresour. Technol., 216, 562-570. https://doi.org/10.1016/j.biortech.2016.05.079