DOI QR코드

DOI QR Code

전략적 정보제공을 위한 침수영향구역 클러스터링

Dentifying and Clustering the Flood Impacted Areas for Strategic Information Provision

  • Park, Eun Mi (Datawiz Inc, Deepartment of Urban Engineering Mokwon University) ;
  • Bilal, Muhammad (Business Intelligence team, DP World, Inc)
  • 투고 : 2021.11.10
  • 심사 : 2021.11.29
  • 발행 : 2021.12.31

초록

본 연구는 폭우로 인해 도로침수가 발생되고 그로 인한 교통상황 악화가 발생할 때, 도로이용자와 침수와 혼잡 상황을 관리하는 시의 관리자들에 필요한 정보를 생산하기 위한 방법론에 대한 연구이다. 홍수와 같은 재난상황에서, 도로이용자들의 2차 피해를 막고, 도로상황 악화를 방지하며 빠른 회복을 위해서는, 적절한 정보가 제공되어야 한다. 도시의 규모에 따라 차이가 있겠으나, 도시에 수천 개의 구간이 존재하고, 특히 홍수와 같은 상황에서 수백 개 내지 천개 이상의 혼잡구간이 존재할 때, 개별 구간단위 혼잡수준 정보는 재난상황관리에 더 이상 유용하지 않다. 본 연구에서는 홍수상황에 영향을 받는 링크들을 공간적으로 클러스터링하고, 클러스터에 포함되지 못하는 영향 링크들은 정보제공 대상에 열외 시켜 무의미한 정보는 제외될 수 있도록 하였다. 또한 클러스터의 시공간적 특성, 즉 시간적 지속성, 공간적 크기를 산정하여, 영향 지역의 심각도 정보가 제공될 수 있도록 하였다. 본 연구를 통하여 만들어진 정보는 도로 이용자와 도시 관리자 모두가 홍수로 파급된 도로네트워크 문제에 적절히 대응하게 하는데 활용될 수 있을 것으로 기대된다.

Flooding usually brings in disruptions and aggravated congestions to the roadway network. Hence, right information should be provided to road users to avoid the flood-impacted areas and for city officials to recover the network. However, the information about individual link congestion may not be conveyed to roadway users and city officials because too many links are congested at the same time. Therefore, more significant information may be desired, especially in a disastrous situation. This information may include 1) which places to avoid during flooding 2) which places are feasible to drive avoiding flooding. Hence, this paper aims to develop a framework to identify the flood-impacted areas in a roadway network and their criticality. Various impacted clusters and their spatiotemporal properties were identified with field data. From this data, roadway users can reroute their trips, and city officials can take the right actions to recover the affected areas. The information resulting from the developed framework would be significant enough for roadway users and city officials to cope with flooding.

키워드

과제정보

본 연구는 한국산업기술평가관리원 지원의 『지역맞춤형 재난안전 문제해결 기술개발 지원 사업』의 연구 성과입니다.

참고문헌

  1. Ester M., Kriegel H. P., Sander J. and Xu X. et al.(1996), "A density-based algorithm for discovering clusters in large spatial databases with noise," Kdd, vol. 96, pp.226-231.
  2. Fukunaga K. and Narendra P. M.(1975), "A branch and bound algorithm for computing k-nearest neighbors," IEEE Transactions on Computers, vol. 100, no. 7, pp.750-753. https://doi.org/10.1109/T-C.1975.224297
  3. Hasan S. and Foliente G.(2015), "Modeling infrastructure system interdependencies and socioeconomic impacts of failure in extreme events: Emerging R&D challenges," Natural Hazards, vol. 78, pp.2143-2168. https://doi.org/10.1007/s11069-015-1814-7
  4. Jenelius E. and Mattsson L. G.(2012), "Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study," Transportation Research Part A: Policy and Practice, vol. 46, no. 5, pp.746-760. https://doi.org/10.1016/j.tra.2012.02.003
  5. Luathep P., Suwansunthon A., Suttiphan S. and Taneerananon P.(2013), "Flood Evacuation Behavior Analysis in Urban Areas," Journal of the Eastern Asia Society for Transportation Studies, vol. 13, pp.178-195.
  6. Qiang A. N.(2007), "A network efficiency measure for congested networks," Europhysics Letters Association, vol. 79, no. 3, 38005. https://doi.org/10.1209/0295-5075/79/38005
  7. Rahmah N. and Sitanggang I. S.(2016), "Determination of optimal epsilon value on DBSCAN algorithm to clustering data on Peatland hotspots in sumatra," In IOP Conference Series: Earth and Environmental Science, IOP Publishing, vol. 31, 012012. https://doi.org/10.1088/1755-1315/31/1/012012
  8. Rodriguez-Nunez E. and Garcia-Palomares J. C.(2014), "Measuring the vulnerability of public transport networks," Journal of Transport Geography, vol. 35, pp.50-63. https://doi.org/10.1016/j.jtrangeo.2014.01.008
  9. Rupi F., Bernardi S., Rossi G. and Danesi A.(2014), "The Evaluation of Road Network Vulnerability in Mountainous Areas: A Case Study," Networks and Spatial Economics, vol. 15, pp.397-411. https://doi.org/10.1007/s11067-014-9260-8
  10. Sullivan J. L., Novak D. C., Aultman-hall L. and Scott D. M.(2010), "Identifying critical road segments and measuring system-wide robustness in transportation network with isolating links: A link-based capacity-reduction approach," Transportation Research Part A, vol. 44, pp.323-336. https://doi.org/10.1016/j.tra.2010.02.003