DOI QR코드

DOI QR Code

Odorant G protein-coupled receptors as potential therapeutic targets for adult diffuse gliomas: a systematic analysis and review

  • Cho, Hee Jin (Department of Biomedical Convergence Science and Technology, Kyungpook National University) ;
  • Koo, JaeHyung (Department of New Biology, DGIST)
  • 투고 : 2021.11.17
  • 심사 : 2021.11.22
  • 발행 : 2021.12.31

초록

Odorant receptors (ORs) account for about 60% of all human G protein-coupled receptors (GPCRs). OR expression outside of the nose has functions distinct from odor perception, and may contribute to the pathogenesis of disorders including brain diseases and cancers. Glioma is the most common adult malignant brain tumor and requires novel therapeutic strategies to improve clinical outcomes. Here, we outlined the expression of brain ORs and investigated OR expression levels in glioma. Although most ORs were not ubiquitously expressed in gliomas, a subset of ORs displayed glioma subtype-specific expression. Moreover, through systematic survival analysis on OR genes, OR51E1 (mouse Olfr558) was identified as a potential biomarker of unfavorable overall survival, and OR2C1 (mouse Olfr15) was identified as a potential biomarker of favorable overall survival in isocitrate dehydrogenase (IDH) wild-type glioma. In addition to transcriptomic analysis, mutational profiles revealed that somatic mutations in OR genes were detected in > 60% of glioma samples. OR5D18 (mouse Olfr1155) was the most frequently mutated OR gene, and OR5AR1 (mouse Olfr1019) showed IDH wild-type-specific mutation. Based on this systematic analysis and review of the genomic and transcriptomic profiles of ORs in glioma, we suggest that ORs are potential biomarkers and therapeutic targets for glioma.

키워드

과제정보

This work was supported by grants from the National Research Foundation (2021R1A2C1009258 to J. Koo and 2021R1C1C1 004653 to H.J. Cho), the Bio & Medical Technology Development Program (2020M3A9D3038435 to J. Koo), the Korean Mouse Phenotype Center (2019M3A9D5A01102797 to J. Koo).

참고문헌

  1. Schwartzbaum JA, Fisher JL, Aldape KD and Wrensch M (2006) Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol 2, 494-503; quiz 491 p following 516 https://doi.org/10.1038/ncpneuro0289
  2. Wen PY and Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359, 492-507 https://doi.org/10.1056/NEJMra0708126
  3. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352, 987-996 https://doi.org/10.1056/NEJMoa043330
  4. Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23, 1231-1251 https://doi.org/10.1093/neuonc/noab106
  5. Brennan CW, Verhaak RG, McKenna A et al (2013) The somatic genomic landscape of glioblastoma. Cell 155, 462-477 https://doi.org/10.1016/j.cell.2013.09.034
  6. Ceccarelli M, Barthel FP, Malta TM et al (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164, 550-563 https://doi.org/10.1016/j.cell.2015.12.028
  7. Cancer Genome Atlas Research N, Brat DJ, Verhaak RG et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372, 2481-2498 https://doi.org/10.1056/NEJMoa1402121
  8. Sriram K and Insel PA (2018) G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol Pharmacol 93, 251-258 https://doi.org/10.1124/mol.117.111062
  9. Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB and Gloriam DE (2017) Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 16, 829-842 https://doi.org/10.1038/nrd.2017.178
  10. Wu A, Maxwell R, Xia Y et al (2019) Combination antiCXCR4 and anti-PD-1 immunotherapy provides survival benefit in glioblastoma through immune cell modulation of tumor microenvironment. J Neurooncol 143, 241-249 https://doi.org/10.1007/s11060-019-03172-5
  11. Zhou Y, Larsen PH, Hao C and Yong VW (2002) CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. J Biol Chem 277, 49481-49487 https://doi.org/10.1074/jbc.M206222200
  12. Di Pizio A, Behrens M and Krautwurst D (2019) Beyond the flavour: the potential druggability of chemosensory G protein-coupled receptors. Int J Mol Sci 20, 1402 https://doi.org/10.3390/ijms20061402
  13. Kang N and Koo J (2012) Olfactory receptors in non-chemosensory tissues. BMB Rep 45, 612-622 https://doi.org/10.5483/BMBRep.2012.45.11.232
  14. Massberg D and Hatt H (2018) Human olfactory receptors: novel cellular functions outside of the nose. Physiol Rev 98, 1739-1763 https://doi.org/10.1152/physrev.00013.2017
  15. Bjarnadottir TK, Gloriam DE, Hellstrand SH, Kristiansson H, Fredriksson R and Schioth HB (2006) Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics 88, 263-273 https://doi.org/10.1016/j.ygeno.2006.04.001
  16. Byrne KF, Pal A, Curtin JF, Stephens JC and Kinsella GK (2021) G-protein-coupled receptors as therapeutic targets for glioblastoma. Drug Discov Today 26, 2858-2870 https://doi.org/10.1016/j.drudis.2021.07.008
  17. HGNC Database, HUGO Gene Nomenclature Committee (HGNC), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom www.genenames.org. November, 2021
  18. Hamm HE (1998) The many faces of G protein signaling. J Biol Chem 273, 669-672 https://doi.org/10.1074/jbc.273.2.669
  19. Iiri T, Farfel Z and Bourne HR (1998) G-protein diseases furnish a model for the turn-on switch. Nature 394, 35-38 https://doi.org/10.1038/27831
  20. Fredriksson R, Lagerstrom MC, Lundin LG and Schioth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63, 1256-1272 https://doi.org/10.1124/mol.63.6.1256
  21. Nordstrom KJ, Sallman Almen M, Edstam MM, Fredriksson R and Schioth HB (2011) Independent HHsearch, Needleman--Wunsch-based, and motif analyses reveal the overall hierarchy for most of the G protein-coupled receptor families. Mol Biol Evol 28, 2471-2480 https://doi.org/10.1093/molbev/msr061
  22. Regard JB, Sato IT and Coughlin SR (2008) Anatomical profiling of G protein-coupled receptor expression. Cell 135, 561-571 https://doi.org/10.1016/j.cell.2008.08.040
  23. Hakak Y, Shrestha D, Goegel MC, Behan DP and Chalmers DT (2003) Global analysis of G-protein-coupled receptor signaling in human tissues. FEBS Lett 550, 11-17 https://doi.org/10.1016/S0014-5793(03)00762-2
  24. Conzelmann S, Levai O, Bode B et al (2000) A novel brain receptor is expressed in a distinct population of olfactory sensory neurons. Eur J Neurosci 12, 3926-3934 https://doi.org/10.1046/j.1460-9568.2000.00286.x
  25. Otaki JM, Yamamoto H and Firestein S (2004) Odorant receptor expression in the mouse cerebral cortex. J Neurobiol 58, 315-327 https://doi.org/10.1002/neu.10272
  26. Raming K, Konzelmann S and Breer H (1998) Identification of a novel G-protein coupled receptor expressed in distinct brain regions and a defined olfactory zone. Recept Channels 6, 141-151
  27. Weber M, Pehl U, Breer H and Strotmann J (2002) Olfactory receptor expressed in ganglia of the autonomic nervous system. J Neurosci Res 68, 176-184 https://doi.org/10.1002/jnr.10164
  28. Feldmesser E, Olender T, Khen M, Yanai I, Ophir R and Lancet D (2006) Widespread ectopic expression of olfactory receptor genes. BMC Genomics 7, 121 https://doi.org/10.1186/1471-2164-7-121
  29. Flegel C, Manteniotis S, Osthold S, Hatt H and Gisselmann G (2013) Expression profile of ectopic olfactory receptors determined by deep sequencing. PLoS One 8, e55368 https://doi.org/10.1371/journal.pone.0055368
  30. Zhang X, Rogers M, Tian H et al (2004) High-throughput microarray detection of olfactory receptor gene expression in the mouse. Proc Natl Acad Sci U S A 101, 14168-14173 https://doi.org/10.1073/pnas.0405350101
  31. Gaudel F, Stephan D, Landel V, Sicard G, Feron F and Guiraudie-Capraz G (2019) Expression of the cerebral olfactory receptors Olfr110/111 and Olfr544 is altered during aging and in Alzheimer's disease-like mice. Mol Neurobiol 56, 2057-2072 https://doi.org/10.1007/s12035-018-1196-4
  32. Ansoleaga B, Garcia-Esparcia P, Llorens F, Moreno J, Aso E and Ferrer I (2013) Dysregulation of brain olfactory and taste receptors in AD, PSP and CJD, and AD-related model. Neuroscience 248, 369-382 https://doi.org/10.1016/j.neuroscience.2013.06.034
  33. Lin MS, Chiu IH and Lin CC (2021) Ultrarapid inflammation of the olfactory bulb after spinal cord injury: protective effects of the granulocyte colony-stimulating factor on early neurodegeneration in the brain. Front Aging Neurosci 13, 701702 https://doi.org/10.3389/fnagi.2021.701702
  34. Garcia-Esparcia P, Schluter A, Carmona M et al (2013) Functional genomics reveals dysregulation of cortical olfactory receptors in Parkinson disease: novel putative chemoreceptors in the human brain. J Neuropathol Exp Neurol 72, 524-539 https://doi.org/10.1097/NEN.0b013e318294fd76
  35. Ansoleaga B, Garcia-Esparcia P, Pinacho R, Haro JM, Ramos B and Ferrer I (2015) Decrease in olfactory and taste receptor expression in the dorsolateral prefrontal cortex in chronic schizophrenia. J Psychiatr Res 60, 109-116 https://doi.org/10.1016/j.jpsychires.2014.09.012
  36. Grison A, Zucchelli S, Urzi A et al (2014) Mesencephalic dopaminergic neurons express a repertoire of olfactory receptors and respond to odorant-like molecules. BMC Genomics 15, 729 https://doi.org/10.1186/1471-2164-15-729
  37. Cho T, Lee C, Lee N, Hong YR and Koo J (2019) Small-chain fatty acid activates astrocytic odorant receptor Olfr920. Biochem Biophys Res Commun 510, 383-387 https://doi.org/10.1016/j.bbrc.2019.01.106
  38. Lee N, Jae Y, Kim M et al (2020) A pathogen-derived metabolite induces microglial activation via odorant receptors. FEBS J 287, 3841-3870 https://doi.org/10.1111/febs.15234
  39. Lee N, Sa M, Hong YR, Lee CJ and Koo J (2018) Fatty acid increases cAMP-dependent lactate and MAO-B-dependent GABA production in mouse astrocytes by activating a galphas protein-coupled receptor. Exp Neurobiol 27, 365- 376 https://doi.org/10.5607/en.2018.27.5.365
  40. Ferrer I, Garcia-Esparcia P, Carmona M et al (2016) Olfactory receptors in non-chemosensory organs: the nervous system in health and disease. Front Aging Neurosci 8, 163
  41. Insel PA, Sriram K, Wiley SZ et al (2018) GPCRomics: GPCR expression in cancer cells and tumors identifies new, potential biomarkers and therapeutic targets. Front Pharmacol 9, 431 https://doi.org/10.3389/fphar.2018.00431
  42. Sriram K, Moyung K, Corriden R, Carter H and Insel PA (2019) GPCRs show widespread differential mRNA expression and frequent mutation and copy number variation in solid tumors. PLoS Biol 17, e3000434 https://doi.org/10.1371/journal.pbio.3000434
  43. Wu V, Yeerna H, Nohata N et al (2019) Illuminating the Onco-GPCRome: novel G protein-coupled receptor-driven oncocrine networks and targets for cancer immunotherapy. J Biol Chem 294, 11062-11086 https://doi.org/10.1074/jbc.rev119.005601
  44. O'Hayre M, Vazquez-Prado J, Kufareva I et al (2013) The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat Rev Cancer 13, 412-424 https://doi.org/10.1038/nrc3521
  45. Kalra S, Mittal A, Gupta K et al (2020) Analysis of single-cell transcriptomes links enrichment of olfactory receptors with cancer cell differentiation status and prognosis. Commun Biol 3, 506 https://doi.org/10.1038/s42003-020-01232-5
  46. Masjedi S, Zwiebel LJ and Giorgio TD (2019) Olfactory receptor gene abundance in invasive breast carcinoma. Sci Rep 9, 13736 https://doi.org/10.1038/s41598-019-50085-4
  47. Ranzani M, Iyer V, Ibarra-Soria X et al (2017) Revisiting olfactory receptors as putative drivers of cancer. Wellcome Open Res 2, 9 https://doi.org/10.12688/wellcomeopenres.10646.1
  48. Weber L, Massberg D, Becker C et al (2018) Olfactory receptors as biomarkers in human breast carcinoma tissues. Front Oncol 8, 33 https://doi.org/10.3389/fonc.2018.00033
  49. Vadevoo SMP, Gunassekaran GR, Lee C et al (2021) The macrophage odorant receptor Olfr78 mediates the lactate-induced M2 phenotype of tumor-associated macrophages. Proc Natl Acad Sci U S A 118, e2102434118 https://doi.org/10.1073/pnas.2102434118
  50. Sa JK, Chang N, Lee HW et al (2020) Transcriptional regulatory networks of tumor-associated macrophages that drive malignancy in mesenchymal glioblastoma. Genome Biol 21, 216 https://doi.org/10.1186/s13059-020-02140-x
  51. Wang Q, Hu B, Hu X et al (2018) Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 33, 152 https://doi.org/10.1016/j.ccell.2017.12.012
  52. Zhao J, Chen AX, Gartrell RD et al (2019) Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat Med 25, 462-469 https://doi.org/10.1038/s41591-019-0349-y
  53. Yuan Y, Qi P, Xiang W, Yanhui L, Yu L and Qing M (2020) Multi-omics analysis reveals novel subtypes and driver genes in glioblastoma. Front Genet 11, 565341 https://doi.org/10.3389/fgene.2020.565341
  54. Wang Q, He Z and Chen Y (2019) Comprehensive analysis reveals a 4-gene signature in predicting response to temozolomide in low-grade glioma patients. Cancer Control 26, 1073274819855118
  55. Zhao H, Du P, Peng R et al (2021) Long noncoding RNA OR7E156P/miR-143/HIF1A axis modulates the malignant behaviors of glioma cell and tumor growth in mice. Front Oncol 11, 690213 https://doi.org/10.3389/fonc.2021.690213
  56. Hanchate NK, Kondoh K, Lu Z et al (2015) Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis. Science 350, 1251-1255 https://doi.org/10.1126/science.aad2456
  57. Serizawa S, Miyamichi K and Sakano H (2005) Negative feedback regulation ensures the one neuron-one receptor rule in the mouse olfactory system. Chem Senses 30 Suppl 1, i99-i100 https://doi.org/10.1093/chemse/bjh133
  58. Pappula AL, Rasheed S, Mirzaei G, Petreaca RC and Bouley RA (2021) A genome-wide profiling of glioma patients with an IDH1 mutation using the catalogue of somatic mutations in cancer database. Cancers (Basel) 13, 4299 https://doi.org/10.3390/cancers13174299
  59. Aquilanti E, Miller J, Santagata S, Cahill DP and Brastianos PK (2018) Updates in prognostic markers for gliomas. Neuro Oncol 20, vii17-vii26 https://doi.org/10.1093/neuonc/noy158
  60. Cui T, Tsolakis AV, Li SC et al (2013) Olfactory receptor 51E1 protein as a potential novel tissue biomarker for small intestine neuroendocrine carcinomas. Eur J Endocrinol 168, 253-261 https://doi.org/10.1530/EJE-12-0814
  61. Jimenez RC, Casajuana-Martin N, Garcia-Recio A et al (2021) The mutational landscape of human olfactory G protein-coupled receptors. BMC Biol 19, 21 https://doi.org/10.1186/s12915-021-00962-0
  62. Trimmer C, Keller A, Murphy NR et al (2019) Genetic variation across the human olfactory receptor repertoire alters odor perception. Proc Natl Acad Sci U S A 116, 9475-9480 https://doi.org/10.1073/pnas.1804106115