DOI QR코드

DOI QR Code

Precise control of mitophagy through ubiquitin proteasome system and deubiquitin proteases and their dysfunction in Parkinson's disease

  • Park, Ga Hyun (Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University) ;
  • Park, Joon Hyung (Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University) ;
  • Chung, Kwang Chul (Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University)
  • Received : 2021.07.05
  • Accepted : 2021.10.06
  • Published : 2021.12.31

Abstract

Parkinson's disease (PD) is one of the most common neurodegenerative diseases in the elderly population and is caused by the loss of dopaminergic neurons. PD has been predominantly attributed to mitochondrial dysfunction. The structural alteration of α-synuclein triggers toxic oligomer formation in the neurons, which greatly contributes to PD. In this article, we discuss the role of several familial PD-related proteins, such as α-synuclein, DJ-1, LRRK2, PINK1, and parkin in mitophagy, which entails a selective degradation of mitochondria via autophagy. Defective changes in mitochondrial dynamics and their biochemical and functional interaction induce the formation of toxic α-synuclein-containing protein aggregates in PD. In addition, these gene products play an essential role in ubiquitin proteasome system (UPS)-mediated proteolysis as well as mitophagy. Interestingly, a few deubiquitinating enzymes (DUBs) additionally modulate these two pathways negatively or positively. Based on these findings, we summarize the close relationship between several DUBs and the precise modulation of mitophagy. For example, the USP8, USP10, and USP15, among many DUBs are reported to specifically regulate the K48- or K63-linked de-ubiquitination reactions of several target proteins associated with the mitophagic process, in turn upregulating the mitophagy and protecting neuronal cells from α-synuclein-derived toxicity. In contrast, USP30 inhibits mitophagy by opposing parkin-mediated ubiquitination of target proteins. Furthermore, the association between these changes and PD pathogenesis will be discussed. Taken together, although the functional roles of several PD-related genes have yet to be fully understood, they are substantially associated with mitochondrial quality control as well as UPS. Therefore, a better understanding of their relationship provides valuable therapeutic clues for appropriate management strategies.

Keywords

Acknowledgement

This work was supported by a grant from the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT, No. 2021R1A2C1005469 to KCC). We apologize to several researchers whose work could not be cited in this review due to space limitations.

References

  1. Henderson MX, Trojanowski JQ and Lee VMY (2019) α-Synuclein pathology in Parkinson's disease and related α-synucleinopathies. Neurosci Lett 709, 134316 https://doi.org/10.1016/j.neulet.2019.134316
  2. Ryan BJ, Hoek S, Fon EA and Wade-Martins R (2020) Mitochondrial dysfunction and mitophagy in Parkinson's disease: from mechanism to therapy. Trends Biochem Sci 40, 200-210 https://doi.org/10.1016/j.tibs.2015.02.003
  3. Wang W, Wang X, Fujioka H et al (2016) Parkinson's disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes. Nat Med 22, 54-63 https://doi.org/10.1038/nm.3983
  4. Um JH and Yun JH (2017) Emerging role of mitophagy in human diseases and physiology. BMB Rep 50, 299 https://doi.org/10.5483/BMBRep.2017.50.6.056
  5. Palikaras K, Lionaki E and Tavernarakis N (2018) Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol 20, 1013-1022 https://doi.org/10.1038/s41556-018-0176-2
  6. Heo JM, Ordureau A, Paulo JA, Rinehart J and Harper JW (2015) The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol Cell 60, 7-20 https://doi.org/10.1016/j.molcel.2015.08.016
  7. Nijman SM, Luna-Vargas MP, Velds A et al (2015) Genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773-786 https://doi.org/10.1016/j.cell.2005.11.007
  8. Reyes-Turcu FE, Ventii KH and Wilkinson KD (2019) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78, 363-397 https://doi.org/10.1146/annurev.biochem.78.082307.091526
  9. Lin MT and Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787-795 https://doi.org/10.1038/nature05292
  10. Marella M, Seo BB, Yagi T and Matsuno-Yagi A (2009) Parkinson's disease and mitochondrial complex I: a perspective on the Ndi1 therapy. J Bioenerg Biomembr 41, 493-497 https://doi.org/10.1007/s10863-009-9249-z
  11. Ferrucci M, Pasquali L, Ruggieri S, Paparelli A and Fornai F (2008) Alpha-synuclein and autophagy as common steps in neurodegeneration. Parkinsonism Relat Disord 14, S180-S184 https://doi.org/10.1016/j.parkreldis.2008.04.025
  12. Devoto VT and Falzone TL (2017) Mitochondrial dynamics in Parkinson's disease: a role for α-synuclein. Dis Model Mech 10, 1075-1087 https://doi.org/10.1242/dmm.026294
  13. Vicario M, Cieri D, Brini M and Cali T (2018) The close encounter between alpha-synuclein and mitochondria. Front Neurosci 12, 1-13 https://doi.org/10.3389/fnins.2018.00001
  14. Kane LA, Lazarou M, Fogel AI et al (2014) PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 205, 143-153 https://doi.org/10.1083/jcb.201402104
  15. Durcan TM and Fon EA (2015) The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev 29, 989-999 https://doi.org/10.1101/gad.262758.115
  16. Eiyama A and Okamoto K (2015) PINK1/Parkin-mediated mitophagy in mammalian cells. Curr Opin Cell Biol 33, 95-101 https://doi.org/10.1016/j.ceb.2015.01.002
  17. Swatek KN and Komander D (2016) Ubiquitin modifications. Cell Res 26, 399-422 https://doi.org/10.1038/cr.2016.39
  18. Tan T, Zimmermann M and Reichert AS (2016) Controlling quality and amount of mitochondria by mitophagy: insights into the role of ubiquitination and deubiquitination. Biol Chem 397, 637-647 https://doi.org/10.1515/hsz-2016-0125
  19. Shaid S, Brandts CH, Serve H and Dikic I (2013) Ubiquitination and selective autophagy. Cell Death Differ 20, 121-130
  20. Guhathakurta S, Kim J, Adams L et al (2021) Targeted attenuation of elevated histone marks at SNCA alleviates α-synuclein in Parkinson's disease. EMBO Mol Med 13, e12188
  21. Sugiura A, McLelland GL, Fon EA and McBride HM (2014) A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J 33, 2142-2156 https://doi.org/10.15252/embj.201488104
  22. Tanik SA, Schultheiss CE, Volpicelli-Daley LA, Brunden KR and Lee VM (2013) Lewy body-like α-synuclein aggregates resist degradation and impair macroautophagy. J Biol Chem 288, 15194-15210 https://doi.org/10.1074/jbc.M113.457408
  23. Chinta SJ, Mallajosyula JK, Rane A and Andersen JK (2010) Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci Lett 486, 235-239 https://doi.org/10.1016/j.neulet.2010.09.061
  24. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT and Sulzer D (2004) Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305, 1292-1295 https://doi.org/10.1126/science.1101738
  25. Narendra DP, Jin SM, Tanaka A et al (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8, e1000298 https://doi.org/10.1371/journal.pbio.1000298
  26. McLelland GL, Soubannier V, Chen CX, McBride HM and Fon EA (2014) Parkin and PINK 1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J 33, 282-295 https://doi.org/10.1002/embj.201385902
  27. Thomas KJ, McCoy MK, Blackinton J et al (2011) DJ-1 acts in parallel to the PINK1/Parkin pathway to control mitochondrial function and autophagy. Hum Mol Genet 20, 40-50 https://doi.org/10.1093/hmg/ddq430
  28. Liu Y, Ma X, Fujioka H, Liu J, Chen S and Zhu X (2019) DJ-1 regulates the integrity and function of ER-mitochondria association through interaction with IP3R3-Grp75-VDAC1. Proc Natl Acad Sci U S A 116, 25322-25328 https://doi.org/10.1073/pnas.1906565116
  29. Zhang Y, Gong XG, Wang ZZ et al (2016) Overexpression of DJ-1/PARK7, the Parkinson's disease-related protein, improves mitochondrial function via Akt phosphorylation on threonine 308 in dopaminergic neuron-like cells. Eur J Neurosci 43, 1379-1388 https://doi.org/10.1111/ejn.13216
  30. Thomas HE, Zhang Y, Stefely JA et al (2018) Mitochondrial complex I activity is required for maximal autophagy. Cell Rep 24, 2404-2417 https://doi.org/10.1016/j.celrep.2018.07.101
  31. Joselin AP, Hewitt SJ, Callaghan SM et al (2012) ROS-dependent regulation of Parkin and DJ-1 localization during oxidative stress in neurons. Hum Mol Genet 21, 4888-4903 https://doi.org/10.1093/hmg/dds325
  32. Thomas KJ, McCoy MK, Blackinton J et al (2011) DJ-1 acts in parallel to the PINK1/Parkin pathway to control mitochondrial function and autophagy. Hum Mol Genet 20, 40-50 https://doi.org/10.1093/hmg/ddq430
  33. Hao LY, Giasson BI and Bonini NM (2010) DJ-1 is critical for mitochondrial function and rescues PINK1 loss of function. Proc Natl Acad Sci U S A 107, 9747-9752 https://doi.org/10.1073/pnas.0911175107
  34. Walter J, Bolognin S, Antony PM et al (2019) Neural stem cells of Parkinson's disease patients exhibit aberrant mitochondrial morphology and functionality. Stem Cell Reports 12, 878-889 https://doi.org/10.1016/j.stemcr.2019.03.004
  35. Obergasteiger J, Frapporti G, Lamonaca G et al (2020) Kinase inhibition of G2019S-LRRK2 enhances autolysosome formation and function to reduce endogenous alpha-synuclein intracellular inclusions. Cell Death Discov 6, 1-13
  36. Carballo-Carbajal I, Weber-Endress S, Rovelli G et al (2010) Leucine-rich repeat kinase 2 induces α-synuclein expression via the extracellular signal-regulated kinase pathway. Cell Signal 22, 821-827 https://doi.org/10.1016/j.cellsig.2010.01.006
  37. Bonello F, Hassoun SM, Mouton-Liger F et al (2019) LRRK2 impairs PINK1/Parkin-dependent mitophagy via its kinase activity: pathologic insights into Parkinson's disease. Hum Mol Genet 28, 1645-1660 https://doi.org/10.1093/hmg/ddz004
  38. Yakhine-Diop SM, Niso-Santano M and Rodriguez-Arribas M (2019) Impaired mitophagy and protein acetylation levels in fibroblasts from Parkinson's disease patients. Mol Neurobiol 56, 2466-2481 https://doi.org/10.1007/s12035-018-1206-6
  39. Kalia SK, Lee S, Smith PD et al (2004) BAG5 inhibits parkin and enhances dopaminergic neuron degeneration. Neuron 44, 931-945 https://doi.org/10.1016/j.neuron.2004.11.026
  40. De Snoo ML, Friesen EL, Zhang YT et al (2019) Bcl-2-associated athanogene 5 (BAG5) regulates Parkin-dependent mitophagy and cell death. Cell Death Dis 10, 907 https://doi.org/10.1038/s41419-019-2132-x
  41. Wang X, Guo J, Fei E et al (2014) BAG5 protects against mitochondrial oxidative damage through regulating PINK1 degradation. PLoS One 9, e86276 https://doi.org/10.1371/journal.pone.0086276
  42. Qu D, Hage A, Don-Carolis K et al (2015) BAG2 gene-mediated regulation of PINK1 protein is critical for mitochondrial translocation of PARKIN and neuronal survival. J Biol Chem 290, 30441-30452 https://doi.org/10.1074/jbc.M115.677815
  43. Grossmann D, Berenguer-Escuder C, Chemla A, Arena G and Kruger R (2020) The emerging role of RHOT1/Miro1 in the pathogenesis of Parkinson's disease. Front Neurol 11, 587 https://doi.org/10.3389/fneur.2020.00587
  44. Berenguer-Escuder C, Grossmann D, Massart F et al (2019) Variants in Miro1 cause alterations of ER-mitochondria contact sites in fibroblasts from Parkinson's disease patients. J Clin Med 8, 2226 https://doi.org/10.3390/jcm8122226
  45. Safiulina D, Kuum M, Choubey V et al (2019) Miro proteins prime mitochondria for Parkin translocation and mitophagy. EMBO J 38, e99384 https://doi.org/10.15252/embj.201899384
  46. Birsa N, Norkett, R, Wauer T et al (2014) Lysine 27 ubiquitination of the mitochondrial transport protein Miro is dependent on serine 65 of the Parkin ubiquitin ligase. J Biol Chem 289, 14569-14582 https://doi.org/10.1074/jbc.M114.563031
  47. Todi SV and Paulson HL (2011) Balancing act: deubiquitinating enzymes in the nervous system. Trends Neurosci 34, 370-382 https://doi.org/10.1016/j.tins.2011.05.004
  48. Magraoui FE, Reidick C, Meyer HE and Platta HW (2015) Autophagy-related deubiquitinating enzymes involved in health and disease. Cells 4, 596-621 https://doi.org/10.3390/cells4040596
  49. Durcan TM, Tang MY, Perusse JR et al (2014) USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin. EMBO J 33, 2473-2491 https://doi.org/10.15252/embj.201489729
  50. Polymeropoulos MH (1998) Autosomal dominant Parkinson's disease and alpha-synuclein. Ann Neurol 44, S63-64 https://doi.org/10.1002/ana.410440710
  51. Alexopoulou Z, Lang J, Perrett RM et al (2016) Deubiquitinase USP8 regulates α-synuclein clearance and modifies its toxicity in Lewy body disease. Proc Natl Acad Sci U S A 113, E4688-E4697
  52. Rott R, Szargel R, Haskin J et al (2011) α-Synuclein fate is determined by USP9X-regulated monoubiquitination. Proc Proc Natl Acad Sci U S A 108, 18666-18671 https://doi.org/10.1073/pnas.1105725108
  53. Lonskaya I, Desforges NM, Hebron ML and Moussa CE (2013) Ubiquitination increases parkin activity to promote autophagic α-synuclein clearance. PLoS One 8, e83914 https://doi.org/10.1371/journal.pone.0083914
  54. Liu X, Hebron M, Shi W, Lonskaya I and Moussa CE (2019) Ubiquitin specific protease-13 independently regulates parkin ubiquitination and alpha-synuclein clearance in alpha-synucleinopathies. Hum Mol Genet 28, 548-560 https://doi.org/10.1093/hmg/ddy365
  55. Devi L, Raghavendran V, Prabhu BM, Avadhani NG and Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283, 9089-9100 https://doi.org/10.1074/jbc.M710012200
  56. Shen J, Du T, Wang X et al (2014) α-Synuclein amino terminus regulates mitochondrial membrane permeability. Brain Res 1591, 14-26 https://doi.org/10.1016/j.brainres.2014.09.046
  57. Liu J, Liu W, Li R and Yang H (2019) Mitophagy in Parkinson's disease: From pathogenesis to treatment. Cells 8, 712 https://doi.org/10.3390/cells8070712
  58. Hirota Y, Yamashita S, Kurihara Y et al (2015) Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways. Autophagy 11, 332-343 https://doi.org/10.1080/15548627.2015.1023047
  59. Rojas-Charr L, Cookson MR, Nino A, Arboleda H and Arboleda G (2014) Downregulation of PINK1 influences mitochondrial fusion-fission machinery and sensitizes to neurotoxins in dopaminergic cells. Neurotoxicology 44, 140-148 https://doi.org/10.1016/j.neuro.2014.04.007
  60. Dixon C, Mathias N, Zweig RM, Davis DA and Gross DS (2005) Alpha-synuclein targets the plasma membrane via the secretory pathway and induces toxicity in yeast. Genetics 170, 47-59 https://doi.org/10.1534/genetics.104.035493
  61. Bishop P, Rocca D and Henley JM (2016) Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. Biochem J 473, 2453-2462 https://doi.org/10.1042/BCJ20160082
  62. Chakraborty J and Ziviani E (2020) Deubiquitinating enzymes in Parkinson's disease. Front Physiol 11, 535 https://doi.org/10.3389/fphys.2020.00535
  63. Kabuta T, Furuta A, Aoki S, Furuta K and Wada K (2008) Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. J Biol Chem 283, 23731-23738 https://doi.org/10.1074/jbc.M801918200
  64. Carmine Belin A, Westerlund M, Bergman O et al (2007) S18Y in ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) associated with decreased risk of Parkinson's disease in Sweden. Parkinsonism Relat Disord 13, 295-298 https://doi.org/10.1016/j.parkreldis.2006.12.002
  65. Faesen AC, Luna-Vargas MP and Geurink PP (2011) The differential modulation of USP activity by internal regulatory domains, interactors and eight ubiquitin chain types. Chem Biol 18, 1550-1561 https://doi.org/10.1016/j.chembiol.2011.10.017
  66. Bingol B, Tea JS, Phu L et al (2014) The mitochondrial deubiquitinase USP30 opposes Parkin-mediated mitophagy. Nature 510, 370-375 https://doi.org/10.1038/nature13418
  67. Cornelissen T, Haddad D, Wauters F et al (2014) The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum Mol Genet 23, 5227-5242 https://doi.org/10.1093/hmg/ddu244
  68. Wang Y, Serricchio M, Jauregui M et al (2015) Deubiquitinating enzymes regulate PARK2-mediated mitophagy. Autophagy 11, 595-606 https://doi.org/10.1080/15548627.2015.1034408
  69. Niu K, Fang H, Chen Z et al (2020) USP33 deubiquitinates PRKN/Parkin and antagonizes its role in mitophagy. Autophagy 16, 724-734 https://doi.org/10.1080/15548627.2019.1656957
  70. Chakraborty J, von Stockum S, Marchesan E et al (2018) USP14 inhibition corrects an in vivo model of impaired mitophagy. EMBO Mol Med 10, e9014 https://doi.org/10.15252/emmm.201809014
  71. Wang L, Qi H, Tang Y, Shen HM (2020) Post-translational modifications of key machinery in the control of mitophagy. Trends Biochem Sci 45, 58-75 https://doi.org/10.1016/j.tibs.2019.08.002