DOI QR코드

DOI QR Code

The Effect of the Surfactant on the Migration and Distribution of Immiscible Fluids in Pore Network

계면활성제가 공극 구조 내 비혼성 유체의 거동과 분포에 미치는 영향

  • Park, Gyuryeong (Department of Energy Resources Engineering, Pukyong National University) ;
  • Kim, Seon-Ok (Department of Energy Resources Engineering, Pukyong National University) ;
  • Wang, Sookyun (Department of Energy Resources Engineering, Pukyong National University)
  • 박규령 (부경대학교 에너지자원공학과) ;
  • 김선옥 (부경대학교 에너지자원공학과) ;
  • 왕수균 (부경대학교 에너지자원공학과)
  • Received : 2021.01.04
  • Accepted : 2021.02.05
  • Published : 2021.02.28

Abstract

The geological CO2 sequestration in underground geological formation such as deep saline aquifers and depleted hydrocarbon reservoirs is one of the most promising options for reducing the atmospheric CO2 emissions. The process in geological CO2 sequestration involves injection of supercritical CO2 (scCO2) into porous media saturated with pore water and initiates CO2 flooding with immiscible displacement. The CO2 migration and distribution, and, consequently, the displacement efficiency is governed by the interaction of fluids. Especially, the viscous force and capillary force are controlled by geological formation conditions and injection conditions. This study aimed to estimate the effects of surfactant on interfacial tension between the immiscible fluids, scCO2 and porewater, under high pressure and high temperature conditions by using a pair of proxy fluids under standard conditions through pendant drop method. It also aimed to observe migration and distribution patterns of the immiscible fluids and estimate the effects of surfactant concentrations on the displacement efficiency of scCO2. Micromodel experiments were conducted by applying n-hexane and deionized water as proxy fluids for scCO2 and porewater. In order to quantitatively analyze the immiscible displacement phenomena by n-hexane injection in pore network, the images of migration and distribution pattern of the two fluids are acquired through a imaging system. The experimental results revealed that the addition of surfactants sharply reduces the interfacial tension between hexane and deionized water at low concentrations and approaches a constant value as the concentration increases. Also it was found that, by directly affecting the flow path of the flooding fluid at the pore scale in the porous medium, the surfactant showed the identical effect on the displacement efficiency of n-hexane at equilibrium state. The experimental observation results could provide important fundamental information on immiscible displacement of fluids in porous media and suggest the potential to improve the displacement efficiency of scCO2 by using surfactants.

대규모로 포집된 이산화탄소를 고갈된 석유·가스 저류층, 대염수층과 같은 심부 지질구조에 주입하는 이산화탄소 지중저장은 대기중 CO2 배출을 저감하기 위한 가장 유망한 기술 중 하나로 연구되고 있다. 이산화탄소 지중저장은 공극수로 포화된 다공성 지질 구조 내부로 초임계상 이산화탄소를 주입함으로써 그 흐름이 공극수와 비혼성 대체를 일으키며 진행된다. 따라서, 공극 구조 내에서 초임계상 이산화탄소와 공극수의 거동과 분포, 그리고 그 결과로 나타나는 대체효율은 두 유체의 상호작용에 의해 좌우되는데, 특히, 점성력과 모세관력은 지질 구조 내부의 환경 조건과 주입 조건에 의해 결정된다. 본 연구에서는 상온상압조건에서 대체유체를 수적법에 적용하여 고온고압조건에서 계면활성제가 초임계상 이산화탄소와 공극수 간 계면장력에 미치는 영향을 산정하였다. 또한, 다공성 매체 내에서의 비혼성 유체의 거동과 분포 양상을 관찰함으로써 계면활성제 농도가 초임계상 이산화탄소의 대체율에 미치는 영향을 분석하였다. 이를 위하여 초임계상 이산화탄소와 공극수의 대체 유체로서 헥산과 탈이온수를 적용하는 마이크로모델 실험을 수행하였으며, 공극 구조 내로의 헥산 주입에 의한 탈이온수의 대체 과정을 정량적으로 분석하기 위하여 이미징 시스템을 통해 두 유체의 비혼성 대체 양상에 관한 이미지를 확득하여 분석하였다. 실험의 결과는 계면활성제의 첨가는 낮은 농도에서도 헥산과 탈이온수 간 계면장력을 급격하게 감소시키며 이후 농도가 증가함에 따라 일정한 값에 접근하는 양상을 보여주었으며, 이러한 변화는 다공성 매체 내부의 공극 규모에서 진입 유체의 흐름 경로에 직접적인 영향을 미침으로써 평형 상태에서 헥산의 대체율에도 동일한 효과를 나타내는 것으로 나타났다. 본 연구의 결과는 다공성 매체 내에서 일어나는 비혼성 유체의 대체에 관한 중요한 정보를 제공하며, 계면활성제의 적용이 이산화탄소 지중저장의 효율을 향상시킬 수 있는 가능성을 보여주었다.

Keywords

References

  1. Aggelopoulos, C.A., Robin, M., Perfetti, E. and Vizika, O. (2010) CO2/CaCl2 solution interfacial tensions under CO2 geological storage conditions: influence of cation valence on interfacial tension. Adv. Water Resour., v.33, p.691-697. https://doi.org/10.1016/j.advwatres.2010.04.006
  2. Aggelopoulos, C.A., Robin, M. and Vizika, O. (2011) Interfacial tensions between CO2 and brine (NaCl + CaCl2) at elevated pressures and temperatures: The additive effect of different salts. Adv. Water Resour., v.34, p.505-501. https://doi.org/10.1016/j.advwatres.2011.01.007
  3. Andreas, J.M., Hauser, E.A. and Tucker, W.B. (1938) Boundary tension by pendant drops. J. Phys. Chem., v.42, p.1001-1019. https://doi.org/10.1021/j100903a002
  4. Arashiro, E.A. and Demarquette, N.R. (1999) Use of the pendant drop method to measure interfacial tension between molten polymers. Mat. Res., v.2, p.23-32. https://doi.org/10.1590/S1516-14391999000100005
  5. Bachu, S. and Bennion, B. (2009) Dependence of CO2-brine interfacial tension on aquifer pressure, Temperature and water salinity. Energy Procedia, v.1, p.3157-3164. https://doi.org/10.1016/j.egypro.2009.02.098
  6. Cao, S.C., Dai, S. and Jung, J. (2016) Supercritical CO2 and brine displacement in geological carbon sequestration: Micromodel and pore network simulation studies. International Journal of Greenhouse Gas Control, v.44, p.104-114. https://doi.org/10.1016/j.ijggc.2015.11.026
  7. Chalbaud, C., Robin, M., Lombard, J.M., Martin, F., Bertin, H. and Egermann, P. (2010) Brine/CO2 interfacial properties and effects on CO2 storage in deep saline aquifers. Oil Gas Sci. Technol., v.65, p.541-555. https://doi.org/10.2516/ogst/2009061
  8. Chiquet. P., Broseta, D. and Thibeau, S. (2007) Wettability alteration of caprock minerals by carbon dioxide. Gelofluids, v.7, p.112-122. https://doi.org/10.1111/j.1468-8123.2007.00168.x
  9. Dickson, J.L., Smith Jr., P.G., Dhanuka, V.V., Srinivasan, V., Stone, M.T., Rossky, P.J., Behles, J.A., Keiper, J.S., Xu, B., Johnson, C. (2005) Interfacial properties of fluorocarbon and hydrocarbon phosphate surfactant at the water-CO2 interface. Ind. Eng. Chem. Res., v.44, p.1370-1380. https://doi.org/10.1021/ie048999c
  10. Grigull, U. and Schmidt, E. (1979) Properties of water and steam in Si-Unit. Second Revised and Updated Printing, Springer-Verlag, Berlin, 190 p.
  11. IAPWS, (2008, Release on the IAPWS Formulation (2008) for the Thermodynamic Properties of Seawater. The International Association for the Properties of Water and Steam, Berlin, Germany.
  12. IPCC (Intergovernmental Panel on Climate Change) (2005) IPCC special report on carbon dioxide capture and storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, 4.
  13. Kim, S. and Santamarina, J.C. (2014) Engineered CO2 injection: The use of surfactant for enhanced sweep efficiency. International Journal of Greenhouse Gas Control, v.20, p.324-332. https://doi.org/10.1016/j.ijggc.2013.11.018
  14. Kim, Y., Wan, J., Kneafsey, T.J. and Tokunaga, T.K. (2012) Dewetting of silica surfaces upon reactions with supercritical CO2 and brine: pore-scale studies in micromodels. Environ. Sci. Technol., v.46, p.4228-4235. https://doi.org/10.1021/es204096w
  15. Kimbrel, E.H., Herring, A.L., Armstrong, R.T., Lunati, I., Bay, B.K. and Wildenschild, D. (2015) Experimental characterization of nonwetting phase trapping and implications for geologic CO2 sequestration. International Journal of Greenhouse Gas Control, v.42, p.1-15. https://doi.org/10.1016/j.ijggc.2015.07.011
  16. Lenormand, R., Touboul, E. and Zarcone, C. (1988) Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech., v.189, p.165-187. https://doi.org/10.1017/S0022112088000953
  17. Lenormand, R. (1990) Liquids in porous media. J. Phys., v.2, p.79-88. https://doi.org/10.1088/0953-8984/2/1/006
  18. Mekhtiev, S.I., Mamedov, A.A., Khalilov, Sh.Kh. and Aleskerov, M.A. (1975) Izv. Vyssh. Uchebn. Zaved. Neft. Gaz, v.3, p.64.
  19. Soroush, M., Wessel-Berg, D., Torsaeter, O. and Kleppe. J. (2013) Investigating impact on flow rate and wettability on residual trapping in CO2 storage in saline aquifers through relative permeability experiments. Energ. Environ. Res., v.3, p.53.
  20. Trevisan, L., Cihan, A., Fagerlund, F., Agartan, E., Mori, H., Birkholzer, J.T., Zhou, Q. and Illangasekare, T.H. (2014) Investigation of mechanisms of supercritical CO2 trapping in deep saline reservoirs using surrogate fluids at ambient laboratory conditions. Int. J. Greenhouse Gas Control, v.29, p.35. https://doi.org/10.1016/j.ijggc.2014.07.012
  21. Wang, Y., Zhang, C.Y., Wei, N., Oostrom, M., Wietsma, T.W., Li, X.C. and Bonneville, A. (2013) Experimental study of crossover from capillary to viscous fingering for supercritical CO2-Water displacement in a homogeneous pore network. Environ. Sci. Technol., v.47, p.212-218. https://doi.org/10.1021/es3014503
  22. Yang, D., Tontiwachwuthikul, P. and Gu, Y. (2005) Interfacial interactions between reservoir brine and CO2 at high pressure and elevated temperature. Energ. Fuel, v.19, p.216-223. https://doi.org/10.1021/ef049792z
  23. Zhang, C., Oostrom, M., Grate, J.W., Wietsma, T.W. and Warner, M.G. (2011) Liquid CO2 displacement of water in a dual-permeability pore network micromodel. Environ. Sci. Technol., v.45, p.7581-7588. https://doi.org/10.1021/es201858r
  24. Zheng, X., Mahabadi, N., Yun, T., and Jang, J. (2017) Effect of capillary and viscous force on CO2 saturation and invasion pattern in the microfluidic chip. Journal of geophysical research, v.122, p.1634-1647.
  25. Zuo, L., Zhang, C., Falta, R.W., and Banson, S.M. (2013) Micromodel investigations of CO2 exsolution from carbonated water in sedimentary rocks. Adv. Water Resour., v.53, p.188-197. https://doi.org/10.1016/j.advwatres.2012.11.004