DOI QR코드

DOI QR Code

Preparation of Halloysite-Based Tubular Media for Enhanced Methylene Blue Adsorption

메틸렌 블루 흡착능 향상을 위한 할로이사이트 기반 튜브형 담체 연구

  • Jeon, Junyeong (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Cho, Yebin (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Kim, Jongwook (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Shin, Seung Gu (Department of Energy Engineering, Gyeongsang National University) ;
  • Jeon, Jong-Rok (Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University) ;
  • Lee, Younki (School of Materials Science and Engineering, Gyeongsang National University)
  • 전준영 (경상국립대학교 공과대학 나노.신소재공학부) ;
  • 조예빈 (경상국립대학교 공과대학 나노신소재융합공학과) ;
  • 김종욱 (경상국립대학교 공과대학 나노신소재융합공학과) ;
  • 신승구 (경상국립대학교 융합기술공과대학 에너지공학과) ;
  • 전종록 (경상국립대학교 농업생명과학대학 환경생명화학과) ;
  • 이윤기 (경상국립대학교 공과대학 나노.신소재공학부)
  • Received : 2021.11.22
  • Accepted : 2021.12.08
  • Published : 2021.12.31

Abstract

Halloysite nanotubes (HNTs), the multiwalled clay mineral with the composition of Al2Si2O5(OH)4·nH2O, have been highlighted as a low-cost adsorbent for the removal of dyes from wastewater. Although a powder of halloysite presents a high specific surface area, forming media are significantly considered due to sludge-clogging induced by the water-bound agglomeration. However, higher firing temperature to achieve the structural durability of the media and lower utilization rate due to longer penetration depth into the media act as hurdles to increase the dye-adsorption capacity. In this work, the retention of the adsorption capacity of halloysite was evaluated with methylene blue solution after the heat treatment at 750 ℃. In order to improve the utilization rate, tubular media were fabricated by extrusion. The images taken by transmission electron microscopy show that HNTs present excellent structural stability under heat treatment. The HNTs also provide superb capacity retention for MB adsorption (93%, 18.5 mg g-1), while the diatomite and Magnesol® XL show 22% (7.65 mg g-1) and 6% (11.7 mg g-1), respectively. Additionally, compositing with lignin enhances adsorption capacity, and the heat treatment under the hydrogen atmosphere accelerates the adsorption in the early stage. Compared to the rod-type, the tubular halloysite media rapidly increases methylene blue adsorption capacity.

할로이사이트(Al2Si2O5(OH)4·nH2O)는 다층벽 나노 튜브 구조의 저단가 천연 점토 분말로, 상대적으로 우수한 비표면적으로 인해 수처리용 염료 흡착 소재로 연구되어왔다. 분말형 점토 소재는 수처리 시 응집으로 인한 관막음 현상을 억제하기 위해서 흡착 담체로의 사용이 검토되나, 강도 확보를 위한 높은 소성 온도 및 분말 대비 낮은 소재 활용률로 인해 흡착능 구현에 난점이 있다. 본 연구에서는 750 ℃에서 대기 소성에 따른 할로이사이트의 메틸렌블루(MB) 흡착능 유지율을 평가하였으며, 소재 활용율 향상을 위한 관형의 할로이사이트 담체를 제조하였다. 할로이사이트의 높은 열적 구조 안정성은 투과전자현미경 이미지를 통해 평가되었으며, 할로이사이트는 각각 22% (7.65 mg g-1), 6% (11.7 mg g-1)의 유지율을 보인 규조토 및 마그네솔®XL 대비 우수한 MB 흡착능 유지율 및 흡착능(93%, 18.5 mg g-1) 나타내었다. 또한, 성형 시 리그닌과의 복합화는 기존 소성체 대비 흡착능이 향상되었으며, 수소 분위기 하 소성 시 초기 MB 흡착을 촉진했다. 관형의 할로이사이트 담체는 접촉면적의 증가를 통해 막대형 담체 대비 빠른 초기 흡착량의 증가 및 우수한 질량 당 흡착능(7.36 mg g-1)을 구현하였다.

Keywords

Acknowledgement

본 연구는 환경부의 재원으로 한국환경산업기술원의 생태모방 기반 환경오염관리 기술개발사업의 지원을 받아 연구되었습니다(2019002790004).

References

  1. Yuan, P., Tan, D., and Annabi-Bergaya, F., "Properties and Applications of Halloysite Nanotubes: Recent Research Advances and Future Prospects," Appl. Clay Sci., 112-113, 75-93 (2015). https://doi.org/10.1016/j.clay.2015.05.001
  2. Singh, B., "Why does Halloysite Roll? - A New Model," Clays Clay Miner., 44(2), 191-196 (1996). https://doi.org/10.1346/CCMN.1996.0440204
  3. Zhang, Y., Tang, A., Yang, H., and Ouyang, J., "Applications and Interfaces of Halloysite Nanocomposites," Appl. Clay Sci., 119, 8-17 (2016). https://doi.org/10.1016/j.clay.2015.06.034
  4. Szczepanik, B., Slomkiewicz, P., Garnuszek, M., Czech, K., Banas, D., Kubala-Kukus, A., and Stabrawa, I., "The Effect of Chemical Modification on the Physico-Chemical Characteristics of Halloysite: FTIR, XRF, and XRD Studies," J. Mol. Struct., 1084, 16-22 (2015). https://doi.org/10.1016/j.molstruc.2014.12.008
  5. Kausar, A., Iqbal, M., Javed, A., Aftab, K., Nazli, Z. i. H., Bhatti, H. N., and Nouren, S., "Dyes Adsorption Using Clay and Modified Clay: A Review," J. Mol. Liq., 256, 395-407 (2018). https://doi.org/10.1016/j.molliq.2018.02.034
  6. Zhao, M., and Liu, P., "Adsorption Behavior of Methylene Blue on Halloysite Nanotubes," Microporous Mesoporous Mater., 112 (1-3), 419-424 (2008). https://doi.org/10.1016/j.micromeso.2007.10.018
  7. Luo, P., Zhang, B., Zhao, Y., Wang, J., Zhang, H., and Liu, J., "Removal of Methylene Blue from Aqueous Solutions by Adsorption Onto Chemically Activated Halloysite Nanotubes," Korean J. Chem. Eng., 28(3), 800-807 (2011). https://doi.org/10.1007/s11814-010-0426-x
  8. Zhao, Y., Abdullayev, E., Vasiliev, A., and Lvov, Y., "Halloysite Nanotubule Clay for Efficient Water Purification," J. Colloid Interface Sci., 406, 121-129 (2013). https://doi.org/10.1016/j.jcis.2013.05.072
  9. Liu, L., Wan, Y., Xie, Y., Zhai, R., Zhang, B., and Liu, J., "The Removal of Dye from Aqueous Solution Using Alginate-halloysite Nanotube Beads," Chem. Eng. J., 187, 210-216 (2012). https://doi.org/10.1016/j.cej.2012.01.136
  10. Tian, X., Wang, W., Wang, Y., Komarneni, S., and Yang, C., "Polyethylenimine Functionalized Halloysite Nanotubes for Efficient Removal and Fixation of Cr (VI)," Microporous Mesoporous Mater., 207, 46-52 (2015). https://doi.org/10.1016/j.micromeso.2014.12.031
  11. Shu, Z., Chen Y., Zhou, J., Li, T., Yu, D., and Wang, Y., "Nanoporous-walled Silica and Alumina Nanotubes Derived from Halloysite: Controllable Preparation and their Dye Adsorption Applications," Appl. Clay Sci., 112-113, 17-24 (2015). https://doi.org/10.1016/j.clay.2015.04.014
  12. Xie, Y., Qian, D., Wu, D., and Ma, X., "Magnetic Halloysite Nanotubes/iron Oxide Composites for the Adsorption of Dyes," Chem. Eng. J., 168(2), 959-963 (2011). https://doi.org/10.1016/j.cej.2011.02.031
  13. Wang, P., Tang, Y., Liu, Y., Wang, T., Wu, P., and Lu, X. Y., "Halloysite Nanotube@carbon with Rich Carboxyl Groups as a Multifunctional Adsorbent for the Efficient Removal of Cationic Pb(ii), Anionic Cr(vi) and Methylene Blue (MB)," Environ. Sci. Nano, 5(10), 2257-2268 (2018). https://doi.org/10.1039/C8EN00561C
  14. Kadi, S., Lellou, S., Marouf-khelifa, K., Schott, J., Gener-batonneau, I., and Khelifa, A., "Preparation, Characterisation and Application of Thermally Treated Algerian Halloysite," Microporous Mesoporous Mater., 158, 47-54 (2012). https://doi.org/10.1016/j.micromeso.2012.03.014
  15. Molaei, A., Amadeh, A., Yari, M., and Afshar, M. R., "Structure, Apatite Inducing Ability, and Corrosion Behavior of Chitosan/Halloysite Nanotube Coatings Prepared by Electrophoretic Deposition on Titanium Substrate," Mater. Sci. Eng. C, 59, 740-747 (2016). https://doi.org/10.1016/j.msec.2015.10.073
  16. O, S., and Kim, D.-S., "Characteristics of the Turbidity Change of Clay Particulate Matter According to Its Surface Electrokinetic Behavior," J. Korean Soc. Water Qual., 26(2), 326-331 (2010).
  17. Cavallaro, G., Milioto, S., Konnova, S., Fakhrullina, G., Akhatova, F., Lazzara, G., Fakhrullin, R., and Lvov, Y., "Halloysite/Keratin Nanocomposite for Human Hair Photoprotection Coating," ACS Appl. Mater. Interfaces, 12(21), 24348-24362 (2020). https://doi.org/10.1021/acsami.0c05252
  18. Rawtani, D., and Agrawal, Y. K., "Multifarious Applications of Halloysite Nanotubes: A Review," Rev. Adv. Mater. Sci, 30, 282-295 (2012).
  19. Radoor, S., Karayil, J., Parameswaranpillai, J., and Siengchin, S., "Adsorption of Methylene Blue Dye from Aqueous Solution by a Novel PVA/CMC/halloysite nanoclay Bio Composite: Characterization, Kinetics, Isotherm and Antibacterial Properties," J. Environ. Heal. Sci. Eng., 18(2), 1311-1327 (2020). https://doi.org/10.1007/s40201-020-00549-x
  20. Park, K., Lee, J., Chang, J. H., Hwang, K. H., and Lee, Y., "Characterization of Surface-Modified Halloysite Nanotubes by Thermal Treatment Under Reducing Atmosphere," J. Nanosci. Nanotechnol., 20(7), 4221-4226 (2020). https://doi.org/10.1166/jnn.2020.17544
  21. Yuan, P., Tan, D., Aannanbi-Bergaya, F., Yan, W., Fan, M., Liu, D., and He, H., "Changes in Structure, Morphology, Porosity, and Surface Activity of Mesoporous Halloysite Nanotubes Under Heating," Clays Clay Miner., 60(6), 561-573 (2012). https://doi.org/10.1346/CCMN.2012.0600602
  22. Wang, Q., Zhang, J., Zheng, Y., and Wang, A., "Adsorption and Release of Ofloxacin from Acid- and Heat-treated Halloysite," Colloids Surf. B Biointerfaces, 113, 51-58 (2014). https://doi.org/10.1016/j.colsurfb.2013.08.036
  23. Sing, K. S. W., "Reporting Physisorption Data for Gas/solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984)," Pure Appl. Chem., 57(4), 603-619 (1985). https://doi.org/10.1351/pac198557040603
  24. Sing, K. S. W., and Williams, R. T., "Physisorption Hysteresis Loops and the Characterization of Nanoporous Materials," Adsorpt. Sci. Technol., 22(10), 773-782 (2004). https://doi.org/10.1260/0263617053499032
  25. Zhang, A. B., Pan, L., Zhang, H. Y., Liu, S. T., Ye, Y., Xia, M. S., and Chen, X. G., "Effects of Acid Treatment on the Physico-chemical and Pore Characteristics of Halloysite," Colloids Surf. A Physicochem. Eng. Asp., 396, 182-188 (2012). https://doi.org/10.1016/j.colsurfa.2011.12.067