DOI QR코드

DOI QR Code

Permanent magnet temperature estimation of high power density permanent magnet synchronous machines by considering magnetic saturation

  • Gao, Jian (College of Electrical and Information Engineering, Hunan University) ;
  • Li, Chengxu (College of Electrical and Information Engineering, Hunan University) ;
  • Zhang, Wenjuan (Department of Electronic and Electrical Engineering, Hunan University) ;
  • Huang, Shoudao (College of Electrical and Information Engineering, Hunan University)
  • 투고 : 2021.04.21
  • 심사 : 2021.09.16
  • 발행 : 2021.12.20

초록

This paper develops a method for permanent magnet (PM) temperature estimation in high power density permanent magnet synchronous machines (PMSMs) by considering magnetic saturation. Most of the previous methods in the literature are based on unsaturation. In this paper, the temperature estimation method of PMs is improved by adding a saturation coefficient. Once a machine is assembled, the inner and outer PM surfaces cannot be seen. Thus, it is impossible to realize visualization measurement of the permanent magnet temperature distribution. In this case, temperature sensors attached to the PM cam be used. However, the cost and robustness need to be considered. Therefore, in this paper, by solving a magnetic-thermal coupling finite element model, the temperature field distribution of a high power density PMSM is obtained. Then, an experimental platform is built to verify the model. Finally, the model is used to verify the reliability of the modified estimation method.

키워드

참고문헌

  1. Betin, F., et al.: Trends in electrical machines control: Samples for classical, sensorless, and fault-tolerant techniques. IEEE Ind. Electron. Mag. 8(2), 43-55 (2014) https://doi.org/10.1109/MIE.2014.2313752
  2. Lu, X., Iyer, K.L.V., Mukherjee, K., Ramkumar, K., Kar, N.C.: Investigation of permanent-magnet motor drives incorporating damper bars for electrified vehicles. IEEE Trans. Ind. Electron. 62(5), 3234-3244 (2015) https://doi.org/10.1109/TIE.2014.2367023
  3. Betin, F., Capolino, G., Casadei, D., Kawkabani, B., Bojoi, R., Harnefors, L., Levi, E., Parsa, L., Fahimi, B.: Trends in electrical machines control: samples for classical, sensorless, and faulttolerant techniques. IEEE Ind. Electron. 8(2), 43-55 (2014) https://doi.org/10.1109/MIE.2014.2313752
  4. Jahns, T.: Getting rare-earth magnets out of EV traction machines: a review of the many approaches being pursued to minimize or eliminate rare-earth magnets from future EV drivetrains. IEEE Electron. Mag. 5(1), 6-18 (2017) https://doi.org/10.1109/MELE.2016.2644280
  5. Sebastian, T.: Temperature effects on torque production and efficiency of PM motors using NdFeB magnets. IEEE Trans. Ind. Appl. 31(12), 353-357 (1995) https://doi.org/10.1109/28.370284
  6. Feng, G., Lai, C., Kar, N.: Expectation maximization particle filter and Kalman filter based permanent magnet temperature estimation for PMSM condition monitoring using high-frequency signal injection. IEEE Trans. Ind. Inf. 13(2), 1261-1270 (2017) https://doi.org/10.1109/TII.2016.2591509
  7. Kral, C., Haumer, A., Lee, S.B.: A practical thermal model for the estimation of permanent magnet and stator winding temperatures. IEEE Trans. Power. Electron. 29(1), 455-464 (2014) https://doi.org/10.1109/TPEL.2013.2253128
  8. Grobler, A.J., Holm, S.R., van Schoor, G.: Thermal modelling of a high-speed permanent magnet synchronous machine. Proc. IEEE Int. Conf. Electron. Mach. Drives Conf. (IEMD) (2013). https://doi.org/10.1109/IEMDC.2013.6556270
  9. Fernandez, D., Martinez, M., Diaz Reigosa, D., Guerrero, J.M., Alvarez, C.M.S., Briz, F.: Influence of magnetoresistance and temperature on permanent magnet condition estimation methods using high-frequency signal injection. IEEE Trans. Ind. Appl. 54(5), 4218-4226 (2018) https://doi.org/10.1109/tia.2018.2836945
  10. Jung, H.S., Park, D., Kim, H., Sul, S., Berry, D.J.: Non-invasive magnet temperature estimation in IPMSM by using high frequency inductance with pulsating high frequency voltage signal injection. IEEE Trans. Ind. Appl. 55(3), 3076-3086 (2019) https://doi.org/10.1109/tia.2018.2889021
  11. Jung, H.-S., Kim, H., Sul, S.-K.: Temperature estimation of IPMSM by using fundamental reactive energy considering variation of inductances. IEEE Trans. Power. Electron. 36(5), 5771-5783 (2021) https://doi.org/10.1109/TPEL.2020.3028084
  12. Reigosa, D., Fernandez, D., Tanimoto, T.: Comparative analysis of BEMF and pulsating high-frequency current injection methods for PM temperature estimation in PMSMs. IEEE Trans. Power. Electron. 32(5), 3691-3699 (2017) https://doi.org/10.1109/TPEL.2016.2592478
  13. Specht, A., Wallscheid, O., Bocker, J.: Determination of rotor temperature for an interior permanent magnet synchronous machine using a precise fux observer. In: Proceedings of IEEE International Power Electronics Conference (IPEC), pp. 501-1507 (2014)
  14. Feng, G., Lai, C., Tjong, J., Kar, N.C.: Noninvasive Kalman filter based permanent magnet temperature estimation for permanent magnet synchronous machines. IEEE Trans. Power Electron. 33(12), 10673-10682 (2018) https://doi.org/10.1109/tpel.2018.2808323
  15. Xiao, S., Griffo, A.: PWM-Based Flux linkage and rotor temperature estimations for permanent magnet synchronous machines. IEEE Trans. Power Electron. 35(6), 6061-6069 (2020) https://doi.org/10.1109/tpel.2019.2948578
  16. Lee, J.-Y., Lee, S.-H., Lee, G.-H., Hong, J.-P., Hur, J.: Determination of parameters considering magnetic nonlinearity in an interior permanent magnet synchronous motor. IEEE Trans. Mag. 42(4), 1303-1306 (2006) https://doi.org/10.1109/TMAG.2006.871951
  17. Liu, K., Zhu, Z.Q., Zhang, Q., Zhang, J.: Influence of non-ideal voltage measurement on parameter estimation in permanent-magnet synchronous machines. IEEE Trans. Ind. Electron. 59(6), 2438-2447 (2012) https://doi.org/10.1109/TIE.2011.2162214
  18. Jiang, Y., Wang, D., Chen, J.: Electromagnetic-thermal-fluidic analysis of permanent magnet synchronous machine by bidirectional method. IEEE Trans. Mag. 54(3), 8102705 (2018)
  19. Zhu, G., Liu, X., Li, L.: Coupled electromagnetic-thermal-fluidic analysis of permanent magnet synchronous machines with a modified model. CES Trans. Electri. Mach. Syst. 3(2), 204-209 (2019) https://doi.org/10.30941/CESTEMS.2019.00027