DOI QR코드

DOI QR Code

Novel decoupling control scheme for IPOP and IPOS modular DC-DC converters

  • 투고 : 2021.05.19
  • 심사 : 2021.10.13
  • 발행 : 2021.12.20

초록

This paper proposes a novel decoupling control scheme for input-parallel modular dual active bridge (DAB) DC-DC converters, where the input current sharing (ICS) control loops and output voltage regulation (OVR) control loop are completely decoupled. First, the input-parallel output-parallel and input-parallel output series systems of modular DAB converters are modeled based on the small-signal modelling of a DAB module. In general, coupling effects between the ICS and OVR control loops exist when the input currents and output voltage are employed as control variables. To eliminate this undesirable effect, the input current errors of DAB converters are introduced as new control variables. In this way, independent single-input single-output systems are obtained. Consequently, a uniform power distribution among all of the DAB modules is achieved in the transient state as well as the steady state, even in the case of parameter mismatch. The feasibility of the proposed control scheme has been verified by simulation and experimental results.

키워드

과제정보

This research was supported by the Yeungnam University Research Grants in 2019.

참고문헌

  1. Song-Manguelle J., et al.: A modular stacked dc transmission and distribution system for long distance subsea applications. In: Proc. IEEE Energy Conversion Congress and Exposition, pp. 4437-4444 (2012)
  2. Kim, J.-W., You, J.-S., Cho, B.-H.: Modeling, control, and design of input-series-output-parallel-connected converter for high-speed-train power system. IEEE Trans. Ind. Electron. 48(3), 536-544 (2001) https://doi.org/10.1109/41.925580
  3. Siri, K., Truong, C.: Performance limitations of random current-sharing parallel-connected converter systems & rheir solution. In: Proc. Annual Applied Power Electronics Conference and Exposition, pp. 860-866 (1998)
  4. Siri, K., Willhof, M., Conner, K.: Uniform voltage distribution control for series connected dc-dc converters. IEEE Trans. Power Electron. 22(4), 1269-1279 (2007) https://doi.org/10.1109/TPEL.2007.900555
  5. Tabisz, W.A., Jovanovic, M.M., Lee, F.C.: Present and future of distributed power systems. In: Proc. Annual Applied Power Electronics Conference and Exposition, pp. 11-18 (1992)
  6. Luo, S., Batarseh, I.: A review of distributed power systems part I: DC distributed power system. IEEE Aerosp. Electron. Syst. Mag. 20(8), 5-16 (2005) https://doi.org/10.1109/MAES.2005.1499272
  7. Ayyanar, R., Giri, R., Mohan, N.: Active input-voltage and load-current sharing in input-series and output-parallel connected modular dc-dc converters using dynamic input-voltage reference scheme. IEEE Trans. Power Electron. 19(6), 1462-1473 (2004) https://doi.org/10.1109/TPEL.2004.836671
  8. Huang, Y., Tse, C.K.: Circuit theoretic classification of parallel connected dc-dc converters. IEEE Trans Circuits Syst. I Regul. Pap. 54(5), 1099-1108 (2007) https://doi.org/10.1109/TCSI.2007.890631
  9. Luo, S., Ye, Z., Lin, R.L., Lee, F.C.: A classification and evaluation of paralleling methods for power supply modules. In: Proc. IEEE Annual Power Electronics Specialists Conference, vol. 2, pp. 901-908 (1999)
  10. Kim, J.-W., Choi, H.-S., Cho, B.-H.: A novel droop method for converter parallel operation. IEEE Trans. Power Electron. 17(1), 25-32 (2002)
  11. Lee, S.-M., Jeung, Y.-C., Lee, D.-C.: Voltage balancing control of IPOS modular dual active bridge DC/DC converters based on hierarchical sliding mode control. IEEE Access 7, 9989-9997 (2019) https://doi.org/10.1109/access.2018.2889345
  12. Ma, D., Chen, W., Ruan, X.: A review of voltage/current sharing techniques for series-parallel-connected modular power conversion systems. IEEE Trans. Power Electron. 35(11), 12383-12400 (2020) https://doi.org/10.1109/tpel.2020.2984714
  13. Chen, W., Ruan, X., Yan, H., Tse, C.K.: DC/DC conversion systems consisting of multiple converter modules: stability, control, and experimental verifications. IEEE Trans. Power Electron. 24(6), 1463-1474 (2009) https://doi.org/10.1109/TPEL.2009.2012406
  14. Ruan, X., Chen, W., Cheng, L., Tse, C.K., Yan, H., Zhang, T.: Control strategy for input-series-output-parallel converter. IEEE Trans. Ind. Electron. 56(4), 1174-1185 (2009) https://doi.org/10.1109/TIE.2008.2007980
  15. Zumel, P., et al.: Modular dual-active bridge converter architecture. IEEE Trans. Ind. Appl. 52(3), 2444-2455 (2016) https://doi.org/10.1109/TIA.2016.2527723
  16. Al-Ismail, F.S.: DC microgrid planning, operation, and control: a comprehensive review. IEEE Access 9, 36154-36172 (2021) https://doi.org/10.1109/ACCESS.2021.3062840
  17. Han, Y., Ning, X., Yang, P., Xu, L.: Review of power sharing, voltage restoration and stabilization techniques in hierarchical controlled DC microgrids. IEEE Access 7, 149202-149223 (2019) https://doi.org/10.1109/access.2019.2946706
  18. Jung, C.-W., Lee, D.-C.: Decoupling control of input-paralleled system with dual active bridge converters. In: Proc. - Int. Symp. Electr. Electron. Eng., pp. 226-231 (2019)
  19. Jung, C.-W.: Power sharing control of modular dc-dc converter systems based on dual active bridges. M.S. thesis, Yeungnam University, Republic of Korea (2020)
  20. Jeung, Y.-C., Lee, D.-C.: Voltage and current regulations of bidirectional isolated dual-active-bridge DC-DC converters based on a double-integral sliding mode control. IEEE Trans. Power Electron. 34(7), 6937-6946 (2019) https://doi.org/10.1109/tpel.2018.2873834
  21. Shao, S., Chen, H., Wu, X., Zhang, J., Sheng, K.: Circulating current and ZVS-on of a dual active bridge dc-dc converter: a review. IEEE Access 7, 50561-50572 (2019) https://doi.org/10.1109/access.2019.2911009
  22. Guan, Y., Xie, Y., Wang, Y., Liang, Y., Wang, X.: An active damping strategy for input impedance of bidirectional dual active bridge DC-DC converter: modeling, shaping, design, and experiment. IEEE Trans. Ind. Electron. 68(2), 1263-1274 (2021) https://doi.org/10.1109/tie.2020.2969126
  23. Rodriguez, A., Vazquez, A., Lamar, D.G., Hernando, M.M., Sebastian, J.: Different purpose design strategies and techniques to improve the performance of a dual active bridge with phase-shift control. IEEE Trans. Power Electron. 30(2), 790-804 (2015) https://doi.org/10.1109/TPEL.2014.2309853
  24. Liu, J., Li, C., Zheng, Z., Wang, K., Li, Y.: Current discrepancy mitigation of input-parallel output-parallel dual-active-bridge converters using coupled inductors. IEEE Trans. Ind. Electron. 68(9), 8182-8192 (2021) https://doi.org/10.1109/TIE.2020.3013793
  25. Chen, X., Xu, G., Han, H., Sun, Y., Liu, Y., Su, M.: Modulated coupled inductor for input-serial-output-parallel dual-active-bridge converter. IEEE Trans. Ind. Electron. (2021). https://doi.org/10.1109/TIE.2021.3088364
  26. Hou, N., Li, Y.: Communication-free power management strategy for the multiple DAB-based energy storage system in islanded DC microgrid. IEEE Trans. Power Electron. 36(4), 4828-4838 (2021) https://doi.org/10.1109/TPEL.2020.3019761
  27. Huang, Y., Tse, C.K., Ruan, X.: General control considerations for input-series connected dc/dc converters. IEEE Trans. Circuits Syst. I 56(6), 1286-1295 (2009) https://doi.org/10.1109/TCSI.2008.2008500
  28. Jang, Y., Jovanovic, M., Li, S.-H., Yang, C.-C.: Power supply having converters with serially connected inputs and parallel connected outputs. US Patent US-9006930 (2015)
  29. Qu, L., Zhang, D., Bao, Z.: Output current-differential control scheme for input-series-output-parallel-connected modular DC-DC converters. IEEE Trans. Power Electron. 32(7), 5699-5711 (2017) https://doi.org/10.1109/TPEL.2016.2607459