DOI QR코드

DOI QR Code

Characterization of rock bream (Oplegnathus fasciatus) fin cells and its susceptibility to different genotypes of megalocytiviruses

  • Jeong, Ye Jin (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Kim, Young Chul (Pathology Division, National Institute of Fisheries Science) ;
  • Min, Joon Gyu (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Jeong, Min A (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Kim, Kwang Il (Department of Aquatic Life Medicine, Pukyong National University)
  • Received : 2021.11.12
  • Accepted : 2021.11.25
  • Published : 2021.12.31

Abstract

Genus Megalocytivirus cause red sea bream iridoviral disease (RSIVD) and scale drop disease (SDD). Based on the phylogeny of the major capsid protein (MCP) and adenosine triphosphatase (ATPase) genes, megalocytiviruses except for SDD virus (SDDV) could be three different genotypes, red sea bream iridovirus (RSIV), infectious spleen and kidney necrosis (ISKNV), and turbot reddish body iridovirus (TRBIV). In this study, primary cells derived from the caudal fin of rock bream (Oplegnathus fasciatus) grew at 25℃ in Leibovitz's medium supplemented with 10% (v/v) fetal bovine serum and primocin (100 ㎍/mL). Rock bream fin (RBF) cells exhibited susceptibility to infections by different genotypes of megalocytiviruses (RSIV, ISKNV and TRBIV) with the appearance of cytopathic effects with an increase in the viral genome copy number. Furthermore, compared to grunt fin (GF) cells, even though 10 times lower number of RSIV genome copies were inoculated in RBF cells, viral genome copy number produced on RBF cells were 44 times higher than that of GF cells at 7 d post-inoculation. As the isolated RBF cells are sensitive to different genotypes of megalocytiviruses (RSIV, ISKNV and TRBIV), they can be used for future studies regarding in vitro viral infection and subsequent diagnosis.

Keywords

Acknowledgement

This work was supported by the Pukyong National University Research Fund in 2020 (CD20200857).

References

  1. Butler, M. (2004) Animal cell culture and technology. Taylor & Francis.
  2. Chinchar, V. G., Hick, P., Ince, I. A., Jancovich, J. K., Marchang, R., Qin, Q., Subramanian, K., Waltzek, T. B., Whittington, R., Williams, T. & Zhang, Q. Y. (2017). ICTV virus taxonomy profile: Iridoviridae. Journal of General Virology, 97: 890-891.
  3. de Groof, A., Guelen, L., Deijs, M., van der Wal, Y., Miyata, M., Ng, K. S., van Grinsven, L., Simmelink, B., Biermann, Y., Grisez, L., van Lent, J., de Ronde, A., Chang, S.F., Scherier, C. & van der Hoek, L. (2015). A Novel Virus Causes Scale Drop Disease in Lates calcarifer. PLoS Pathogens, 11: e1005074. https://doi.org/10.1371/journal.ppat.1005074
  4. Dong, C., Weng, S., Shi, X., Xu, X., Shi, N. & He, J. (2008). Development of a mandarin fish Siniperca chuatsi fry cell line suitable for the study of infectious spleen and kidney necrosis virus (ISKNV). Virus Research, 135: 273-281. https://doi.org/10.1016/j.virusres.2008.04.004
  5. Gardenia, L., Sukenda, S., Junior, M. Z., Lusiastuti, A. & Alimuddin, A. (2020). Development of primary cell culture from spleen of giant gourami Osphronemus goramy for propagation of giant gourami iridovirus (GGIV). Journal of Fish Diseases, 43: 829-838. https://doi.org/10.1111/jfd.13155
  6. He, J. G., Deng, M., Weng, S. P., Li, Z., Zhou, S. Y., Long, Q. X., Wang, X. Z. & Chan, S. M. (2001). Complete genome analysis of the mandarin fish infectious spleen and kidney necrosis iridovirus. Virology, 291: 126-139. https://doi.org/10.1006/viro.2001.1208
  7. He, J. G., Zeng, K., Weng, S. P & Chan, S. M. (2002). Experimental transmission, pathogenicity and physical-chemical properties of infectious spleen and kidney necrosis virus (ISKNV). Aquaculture, 204: 11-24. https://doi.org/10.1016/S0044-8486(01)00639-1
  8. Imajoh, M., Sugiura, H. & Oshima, S. I. (2004). Morphological changes contribute to apoptotic cell death and are affected by caspase-3 and caspase-6 inhibitors during red sea bream iridovirus permissive replication. Virology, 322: 220-230. https://doi.org/10.1016/j.virol.2004.02.006
  9. Inouye, K., Yamano, K., Maeno, Y., Nakajima, K., Matsuoka, M., Wada, Y. & Sorimachi, M. (1992). Iridovirus infection of cultured red sea bream, Pagrus major. Fish Pathology, 27: 19-27. https://doi.org/10.3147/jsfp.27.19
  10. Ito, T., Yoshiura, Y., Kamaishi, T., Yoshida, K. & Nakajima, K. (2013). Prevalence of red sea bream iridovirus among organs of Japanese amberjack (Seriola quinqueradiata) exposed to cultured red sea bream iridovirus. Journal of General Virology, 94: 2094-2101. https://doi.org/10.1099/vir.0.052902-0
  11. Jeong, J. B., Cho, H. J., Jun, L. J., Hong, S. H., Chung, J. K. & Jeong, H. D. (2008). Transmission of iridovirus from freshwater ornamental fish (pearl gourami) to marine fish (rock bream). Diseases of. Aquatic Organisms, 82: 27-36. https://doi.org/10.3354/dao01961
  12. Jeong, J. B., Jun, L. J., Yoo, M. H., Kim, M. S., Komisar, J. L. & Jeong, H. D. (2003). Characterization of the DNA nucleotide sequences in the genome of red sea bream iridoviruses isolated in Korea. Aquaculture, 220: 119-133. https://doi.org/10.1016/S0044-8486(02)00538-0
  13. Jin, J. W., Kim, Y. K., Hong, S., Kim, Y. C., Kwon, W. J. & Jeong, H. D. (2018). Identification and characterization of Megalocytivirus type 3 infection with low mortality in starry flounder, Platichthys stellatus, in Korea. Journal of World Aquaculture Society, 49: 229-239. https://doi.org/10.1111/jwas.12439
  14. Jung, S. J. & Oh, M. J. (2000). Iridovirus-like infection associated with high mortalities of striped beak-perch, Oplegnathus fasciatus (Temminck et Schlegel), in southern coastal areas of the Korean peninsula. Journal of Fish Diseases, 23: 223-226. https://doi.org/10.1046/j.1365-2761.2000.00212.x
  15. Kawato, Y., Yamashita, H., Yuasa, K., Miwa, S. & Nakajima, K. (2017). Development of a highly permissive cell line from spotted knifejaw (Oplegnathus punctatus) for red sea bream iridovirus. Aquaculture, 473: 291-298. https://doi.org/10.1016/j.aquaculture.2017.02.027
  16. Kim, G. H., Kim, M. J., Choi, H. J., Koo, M. J., Kim, M. J., Min, J. G. & Kim, K. I. (2021). Evaluation of a novel TaqMan probe-based real-time PCR assay for detection and quantitation of red sea bream iridovirus. Fisheries and Aquatic Sciences, 24: 351-359. https://doi.org/10.47853/FAS.2021.e34
  17. Kim, K. I., Jin, J. W., Kim, Y. C. & Jeong, H. D. (2014). Detection and genetic differentiation of megalocytiviruses in shellfish, via high-resolution melting (HRM) analysis. Korean Journal of Fisheries and Aquatic Sciences, 47: 241-246. https://doi.org/10.5657/KFAS.2014.0241
  18. Kim, K. I., Lee, E. S., Do, J. W., Hwang, S. D., Cho, M., Jung, S. H., Jee, B. Y., Kwon, W. J. & Jeong, H. D. (2019). Genetic diversity of Megalocytivirus from cultured fish in Korea. Aquaculture, 509: 16-22. https://doi.org/10.1016/j.aquaculture.2019.05.014
  19. Ku, C. C., Lu, C. H. & Wang, C. S. (2010). Establishment and characterization of a fibroblast cell line derived from the dorsal fin of red sea bream, Pagrus major (Temminck & Schlegel). Journal of Fish Diseases, 33, 187-196. https://doi.org/10.1111/j.1365-2761.2009.01104.x
  20. Kurita, J., Nakajima, K., Hirono, I. & Aoki, T. (1998). Polymerase chain reaction (PCR) amplification of DNA of red sea bream iridovirus (RSIV). Fish Pathology, 33: 17-23. https://doi.org/10.3147/jsfp.33.17
  21. Kurita, J. & Nakajima, K. (2012). Megalocytiviruses. Viruses, 4, 521-538. https://doi.org/10.3390/v4040521
  22. Kwon, W. J., Yoon, M. J., Jin, J. W., Kim, K. I., Kim, Y. C., Hong, S. & Jeong, H. D. (2020). Development and characterization of megalocytivirus persistently-infected cell cultures for high yield of virus. Tissue and Cell, 66: 101387. https://doi.org/10.1016/j.tice.2020.101387
  23. Oh, M. J., Jung, S. J. & Kim, Y. J. (1999). Detection of RSIV (red sea bream iridovirus) in the cultured marine fish by the polymerase chain reaction. Journal of Fish Pathology, 12: 66-69.
  24. Oh, S. Y. & Nishizawa, T. (2016). Establishment of rock bream Oplegnathus fasciatus embryo (RoBE-4) cells with cytolytic infection of red seabream iridovirus (RSIV). Journal of Virological Methods, 238: 1-5. https://doi.org/10.1016/j.jviromet.2016.09.017
  25. OIE (World Organization for Animal Health) (2021). Manual of Diagnostic Tests for Aquatic Animal. Chapter 2.3.7. Red sea bream iridoviral disease. https://www.oie.int/fileadmin/Home/eng/Health_standards/aahm/current/2.3.07_RSIVD.pdf
  26. Shi, C. Y., Wang, Y. G., Yang, S. L., Huang, J. & Wang, Q. Y. (2004). The first report of an iridovirus-like agent infection in farmed turbot, Scophthalmus maximus, in China. Aquaculture, 236: 11-25. https://doi.org/10.1016/j.aquaculture.2003.11.007
  27. Wen, C.M., Lee, C.W., Wang, C.S., Cheng, Y.H. and Huang, H.Y. (2008) Development of two cell lines from Epinephelus coioides brain tissue for characterization of betanodavirus and megalocytivirus infectivity and propagation. Aquac, 278(1-4): 14-21. https://doi.org/10.1016/j.aquaculture.2008.03.020
  28. Xu, D., Lou, B., Bertollo, L. A. C. & de Bello Cioffi, M. (2013). Chromosomal mapping of microsatellite repeats in the rock bream fish Oplegnathus fasciatus, with emphasis of their distribution in the neo-Y chromosome. Molecular Cytogenetics, 6, 12. https://doi.org/10.1186/1755-8166-6-12
  29. Yeh, S. W., Cheng, Y. H., Nan, F. N. & Wen, C.M. (2018). Characterization and virus susceptibility of a continuous cell line derived from the brain of Aequidens rivulatus (Gunther). Journal of Fish Diseases, 41, 635-641. https://doi.org/10.1111/jfd.12763