DOI QR코드

DOI QR Code

Ground motion intensity measure to evaluate seismic performance of rocking foundation system

  • Ko, Kil-Wan (Department of Civil and Environmental Engineering, University of California) ;
  • Ha, Jeong-Gon (Advanced Structures and Seismic Safety Research Divison, Korea Atomic Energy Research Institute)
  • Received : 2021.06.29
  • Accepted : 2021.10.09
  • Published : 2021.12.25

Abstract

The rocking foundation is effective for reducing structural seismic demand and avoiding overdesign of the foundation. It is crucial to evaluate the performance of rocking foundations because they cause plastic hinging in the soil. In this study, to derive optimized ground motion intensity measures (IMs) for rocking foundations, the efficiency of IMs correlated with engineering demand parameters (EDPs) was estimated through the coefficient determination using a physical modeling database for rocking shallow foundations. Foundation deformations, the structural horizontal drift ratio, and contribution in drift from foundation rotation and sliding were selected as crucial EDPs for the evaluation of rocking foundation systems. Among 15 different IMs, the peak ground velocity exhibited the most efficient parameters correlated with the EDPs, and it was discovered to be an efficient ground motion IM for predicting the seismic performance of rocking foundations. For vector regression, which uses two IMs to present the EDPs, the IMs indicating time features improved the efficiency of the regression curves, but the correlation was poor when these are used independently. Moreover, the ratio of the column-hinging base shear coefficient to the rocking base shear coefficient showed obvious trends for the accurate assessment of the seismic performance of rocking foundation-structure systems.

Keywords

Acknowledgement

This research was supported by Korea Construction Engineering and Transport Development Collaboratory Management Institute (KOCED), Korea Advanced Institute of Science and Technology (KAIST) and KAIST Analysis Center for Research Advancement (KARA).

References

  1. Ali, S.B. and Kim, D. (2017), "Wavelet analysis of soil-structure interaction effects on seismic responses of base-isolated nuclear power plants", Earthq. Struct., 13(6), 561-572. http://doi.org/10.12989/eas.2017.13.6.561.
  2. Anastasopoulos, I., Gazetas, G., Loli, M., Apostolou, M. and Gerolymos, N. (2010), "Soil failure can be used for seismic protection of structures", Bull. Earthq. Eng., 8, 309-326. https://doi.org/10.1007/s10518-009-9145-2.
  3. Anastasopoulos, I., Gelagoti, F., Kourkoulis, R. and Gazetas, G. (2011), "Simplified constitutive model for simulation of cyclic response of shallow foundations: Validation against laboratory tests", J. Geotech. Geoenviron. Eng., 137(12), 1154-1168. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000534.
  4. Anastasopoulos, I., Kourkoulis, R., Gelagoti, F. and Papadopoulos, E. (2012), "Rocking response of SDOF systems on shallow improved sand: An experimental study", Soil Dyn. Earthq. Eng., 40, 15-33. https://doi.org/10.1016/j.soildyn.2012.04.006.
  5. Anastasopoulos, I., Loli, M., Georgarakos, T. and Drosos, V. (2013), "Shaking table testing of rocking-isolated bridge pier on sand", J. Earthq. Eng., 17(1), 1-32. https://doi.org/10.1080/13632469.2012.705225.
  6. Arias, A. (1970), Measure of Earthquake Intensity, Ed. R.J. Hansen, Seismic Design for Nuclear Power Plants, MIT Press, Cambridge, Mass.
  7. Aydemir, M.E. and Aydemir, C. (2019), "Residual displacement estimation of simple structures considering soil structure interaction", Earthq. Struct., 16(1), 69-82. http://doi.org/10.12989/eas.2019.16.1.069.
  8. Benjamin, J.R. (1988), "A criterion for determining exceedance of the operating basis earthquake", EPRI Report NP-5930, Electric Power Research Institute, Palo Alto, California.
  9. Bray, J.D. and Travasarou, T. (2007), "Simplified procedure for estimating earthquake-induced deviatoric slope displacements", J. Geotech. Geoenviron. Eng., 133(4), 381-392. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(381).
  10. Crespellani, T., Madiai, C. and Vannucchi, G. (1998), "Earthquake destructiveness potential factor and slope stability", Geotechnique, 48(3), 411-419. https://doi.org/10.1680/geot.1998.48.3.411.
  11. Dashti, S. and Karimi, Z. (2017), "Ground motion intensity measures to evaluate I: The liquefaction hazard in the vicinity of shallow-founded structures", Earthq. Spectra, 33(1), 241-276. https://doi.org/10.1193/103015eqs162m.
  12. Deng, L. and Kutter, B.L. (2012), "Characterization of rocking shallow foundations using centrifuge model tests", Earthq. Eng. Struct. Dyn., 41, 1043-1060. https://doi.org/10.1002/eqe.1181.
  13. Deviprasad, B.S. and Dodagoudar, G.R. (2020), "Seismic response of bridge pier supported on rocking shallow foundation", Geomech. Eng., 21(1), 73-84. http://doi.org/10.12989/gae.2020.21.1.073.
  14. Fernandez-Sola, L.R. and Huerta-Ecatl, J.E. (2018), "Inelastic behavior of systems with flexible base", Earthq. Struct., 14(5), 411-424. http://doi.org/10.12989/eas.2018.14.5.411.
  15. Gajan, S. and Kutter, B.L. (2008), "Capacity, settlement, and energy dissipation of shallow footings subjected to rocking", J. Geotech. Geoenviron. Eng., 134, 1129-1141. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:8(1129).
  16. Gajan, S. and Kutter, B.L. (2009), "Effects of moment-to-shear ratio on combined cyclic load-displacement behavior of shallow foundations from centrifuge experiments", J. Geotech. Geoenviron. Eng., 135, 1044-1055. https://doi.org/10.1061/(ASCE)gt.1943-5606.0000034.
  17. Gajan, S., Kutter, B.L., Phalen, J.D., Hutchinson, T.C. and Martin, G.R. (2005), "Centrifuge modeling of load-deformation behavior of rocking shallow foundations", Soil Dyn. Earthq. Eng., 25, 773-783. https://doi.org/10.1016/j.soildyn.2004.11.019.
  18. Gajan, S., Soundararajan, S., Yang, M. and Akchurin, D. (2020), "Effects of rocking coefficient and critical contact area ratio on the performance of rocking foundations from centrifuge and shake table experimental results", Soil Dyn. Earthq. Eng., 141, 106502. https://doi.org/10.1016/j.soildyn.2020.106502.
  19. Gavras, A.G., Kutter, B.L., Hakhamaneshi, M., Gajan, S., Tsatsis, A., Sharma, K., Kohno, T., Deng, L., Anastasopoulos, I. and Gazetas, G. (2020), "Database of rocking shallow foundation performance: Dynamic shaking", Earthq. Spectra, 36(2), 960-982. https://doi.org/10.1177/8755293019891727.
  20. Gazetas, G. (2015), "4th Ishihara lecture: Soil-foundation-structure systems beyond conventional seismic failure thresholds", Soil Dyn. Earthq. Eng. 68, 23-39. https://doi.org/10.1016/j.soildyn.2014.09.012.
  21. Gazetas, G., Anastasopoulos, I. and Garini, E. (2014), "Geotechnical design with apparent seismic safety factors well-bellow 1", Soil Dyn. Earthq. Eng. 57, 37-45. https://doi.org/10.1016/j.soildyn.2013.10.002.
  22. Ghayoomi, M. and Dashti, S. (2015), "Effect of ground motion characteristics on seismic soil-foundation-structure interaction", Earthq. Spectra, 31(3), 1789-1812. https://doi.org/10.1193/040413EQS089M.
  23. Hakhamaneshi, M. and Kutter, B.L. (2016), "Effect of footing shape and embedment on the settlement, recentering, and energy dissipation of shallow footings subjected to rocking", J. Geotech. Geoenviron. Eng., 142(12), 04016070. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001564.
  24. Housner, G.W. (1963), "The behavior of inverted pendulum structures during earthquakes", Bull. Seismol. Soc. Am., 53(2), 403-417. https://doi.org/10.1785/BSSA0530020403.
  25. Karakas, A.I., Ozgan, K. and Daloglu, A.T. (2018), "Soil-structure interaction effects on seismic behavior of a hyperbolic cooling tower using three-parameter Vlasov foundation model", Earthq. Struct., 14(1), 85-94. http://doi.org/10.12989/eas.2018.14.1.085.
  26. Kim, D.K., Lee, S.H, Kim, D.S., Choo, Y.W. and Park, H.G. (2015), "Rocking effect of a mat foundation on the earthquake response of structures", J. Geotech. Geoenviron. Eng., 141, 04014085. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001207.
  27. Ko, K.W., Ha, J.G., Park, H.G. and Kim, D.S. (2018), "Soil-rounding effect on embedded rocking foundation via horizontal slow cyclic tests", J. Geotech. Geoenviron. Eng., 144, 04018004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001848.
  28. Ko, K.W., Ha, J.G., Park, H.J. and Kim, D.S. (2019), "Centrifuge modeling of improved design for rocking foundation using short piles", J. Geotech. Geoenviron. Eng., 145(8), 04019031. https://doi.org/10.1061/(ASCE)gt.1943-5606.0002064.
  29. Ko, K.W., Ha, J.G., Park, H.J. and Kim, D.S. (2021), "Investigation of period-lengthening ratio for single-degree-of-freedom structures using dynamic centrifuge test", J. Earthq. Eng., 25(7), 1358-1380. https://doi.org/10.1080/13632469.2019.1576557.
  30. Kokkali, P., Abdoun, T. and Anastasopoulos, I. (2015), "Centrifuge modeling of rocking foundations on improved soil", J. Geotech. Geoenvironm. Eng., 141(10), 04015041. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001315.
  31. Kramer, S.L. and Mitchell, R.A. (2006), "Ground motion intensity measures for liquefaction hazard evaluation", Earthq. Spectra, 22(2), 413-438. https://doi.org/10.1193/1.2194970.
  32. Liu, W., Hutchinson, T.C., Gavras, A.G., Kutter, B.L. and Hakhamaneshi, M. (2015), "Seismic behavior of frame-wall-rocking foundation systems. I: Test program and slow cyclic results", J. Struct. Eng., 141, 04015059. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000637.
  33. Luco, N. and Cornell, C.A. (2007), "Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions", Earthq. Spectra, 23(2), 357-392. https://doi.org/10.1193/1.2723158.
  34. McCann, M.W. and Shah, H.C. (1979), "Determining strong-motion duration of earthquakes", Bull. Seismol. Soc. Am., 69(4), 1253-1265. https://doi.org/10.1785/BSSA0690041253.
  35. Ngo, V.L., Kim, J.M. and Lee, C. (2019), "Influence of structure-soil-structure interaction on foundation behavior for two adjacent structures: Geo-centrifuge experiment", Geomech. Eng., 19(5), 407-420. https://doi.org/10.12989/gae.2019.19.5.407.
  36. Rathje, E.M., Abrahamson, N.A. and Bray, J.D. (1998), "Simplified frequency content estimates of earthquake ground motions", J. Geotech. Geoenviron. Eng., 124, 150-159. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:2(150).
  37. Schofield, A.N. (1980), "Cambridge geotechnical centrifuge operations", Geotechnique, 30(3), 227-268. https://doi.org/10.1680/geot.1980.30.3.227.
  38. Travasarou, T. and Bray, J.D. (2003), "Optimal ground motion intensity measures for assessment of seismic slope displacements", Proceedings of the 2003 Pacific Conference on Earthquake Engineering, Christchurch, New Zealand.
  39. Trifunac, M.D. and Brady, A.G. (1975), "A study on the duration of strong earthquake ground motion", Bull. Seismol. Soc. Am., 65(3), 581-626. https://doi.org/10.1785/BSSA0650030581.
  40. Von Thun, J.L. Rochim, L.H., Scott, G.A. and Wilson, J.A. (1988), "Earthquake ground motions for design and analysis of dams", Earthquake Engineering and Soil Dynamics II-Recent Advances in Ground-Motion Evaluation, 20, 463-481.