과제정보
본 연구는 환경부/물관리 연구사업의 지원으로 수행되었음(과제번호 127568).
참고문헌
- Fang, Z., Wang, Y., Peng, L., and Hong, H. (2021). "Predicting flood susceptibility using LSTM neural networks." Journal of Hydrology, Vol. 594, 125734.
- Jabbar, H., and Khan, R.Z. (2015). "Methods to avoid over-fitting and under-fitting in supervised machine learning (comparative study)." Computer Science, Communication and Instrumentation Devices, pp. 163-172.
- Kim, D.P., Lee, N.H, and Lee, D.R. (2011), "Analysis of heavy rain damage in the test basin of Seolma-stream in July 2011." Water for Future, KWRA, Vol. No. 10.
- Kim, H.I, Han, K.Y., and Lee, J.Y. (2020). "Prediction of urban flood extent by LSTM model and logistic regression." Journal of the Korean Society of Civil Engineering, Vol. 40, No. 3, pp. 273-283.
- Korea Institute of Civil and building Technology (KICT) (2015). Hydrological survey for flood forecasting of the mountainous river basin.
- Korea Water Resources Association (KWRA) (2019). River design criteria commentary.
- Krause, P., Boyle, D.P., and Base, F. (2005). "Comparison of different efficiency criteria for hydrological model assessment." Advances in Geosciences, Vol. 5, pp. 89-97. https://doi.org/10.5194/adgeo-5-89-2005
- Le, X.H., Ho, H.V., Lee, G., and Jung, S. (2019). "Application of long short-term memory (LSTM) neural network for flood forecasting." Water, Vol. 11, No. 7, 1387.
- Moriasi, D.N., Gitau, M.W., Pai, N., and Daggupati, P. (2015). "Hydrologic and water quality models: Performance measures and evaluation criteria." Transactions of the ASABE, Vol. 58, No. 6, pp. 1763-1785. https://doi.org/10.13031/trans.58.10715
-
Olah, C. (2015). Understanding lstm networks, accessed 23 November 2021,
- Park, S.H., and Kim, H.J. (2020). "Design of artificial intelligence water level prediction system for prediction of river flood." Journal of the Korea Institute of Information and Communication Engineering, Vol. 24, No. 2, pp. 198-203. https://doi.org/10.6109/JKIICE.2020.24.2.198
- Tran, Q.K., and Song, S.K. (2017). "Water level forecasting based on deep learning: A use case of Trinity River-Texas-The United States." Journal of KIISE, Vol. 44, No. 6, pp. 607-612. https://doi.org/10.5626/JOK.2017.44.6.607
- Yoo, H.J., Lee, S.O., Choi, S.H., and Park, M.H. (2019). "A study on the data driven neural network model for the prediction of time series data: Application of water surface elevation forecasting in Hangang River bridge." Journal of Korean Society of Disaster & Security, Vol. 12, No. 2, pp. 73-82. https://doi.org/10.21729/KSDS.2019.12.2.73
- Yoo, H.J., Lee, S.O., Choi, S.H., and Park, M.H. (2020). "Development of a data-driven model for forecasting outflow to establish a reasonable river water management system." Journal of Korean Society of Disaster and Security. Vol. 13, No. 4, pp. 75-92. https://doi.org/10.21729/KSDS.2020.13.4.75