References
- E. Hairer, and G. Wanner, Solving ordinary differential equations II. Stiff and Differential - Algebraic problems Vol. II, Springer-Verlag, 2010.
- J.C. Butcher, On the convergence of the numerical solutions to ordinary differential equations, Math. Comput. 20 (1966) 1-10. https://doi.org/10.1090/S0025-5718-1966-0189251-X
- S. J. Y. Huang, Implementation of General Linear Methods Stiff Ordinary Differential Equations. Ph.D. Thesis, Department of Mathematics, University of Auckland, 2005.
- J.C. Butcher, Diagonally implicit multi-stage integration methods, Appl. Numer. Math. 11 (1993) 347-363. https://doi.org/10.1016/0168-9274(93)90059-Z
- J.C. Butcher, P. Chartier and Z. Jackiewicz, Experiments with a variable order type 1 DIMSIM code, Numer. Alg. 22 (1999) 237-261. https://doi.org/10.1023/A:1019135630307
- J.C. Butcher and Z. Jackiewicz, Implementation of diagonally implicit general linear methods for ordinary differential equations, SIAM J. Numer. Anal. 34 (1997) 2119-2141. https://doi.org/10.1137/S0036142995282509
- A. Abdi and G. Hojjati, Maximal order for second derivative general linear methods with Runge-Kutta stability, Applied Numerical Mathematics, 61(10), (2011), 1046-1058. https://doi.org/10.1016/j.apnum.2011.06.004
- R. I. Okuonghae and M. N. O. Ikhile, Second derivative general linear methods, Numer. Algor. 67, (2014), 637-654. https://doi.org/10.1007/s11075-013-9814-8
- R. I. Okuonghae and M. N. O. Ikhile, Second derivative GLM with nearly ARK stability, J. Numer. Math., 22(2), (2014), 165-176.
- P. O. Olatunji and M. N. O. Ikhile, Strongly regular general linear methods, J. Sci. Comput., 82(7), (2020), 1-25. https://doi.org/10.1007/s10915-019-01102-1
- A. Nordsieck, On numerical integration of ordinary differential equations, Math. Comp. 16 (1962) 22-49. https://doi.org/10.1090/S0025-5718-1962-0136519-5
- C. W. Gear, Numerical Iniial Value problems in Ordinary Differential Equations, Prentice Hall 1971.
- J.C. Butcher, P. Chartier and Z. Jackiewicz, Nordsieck representation of DIMSIMs, Numer. Alg. 16 (1997) 209-230. https://doi.org/10.1023/A:1019195215402
- G. Dahlquist, A special stability problem for Linear Multistep Methods, Academic Press, New York, 1963.
- J. C. Butcher, General linear methods for stiff differential equations, BIT 41, (2001), 240-264. https://doi.org/10.1023/A:1021986222073
- W. M. Wright, Explicit general linear methods with inherent Runge-Kutta stability, Numer. Alg. 31, (2002), 381-399. https://doi.org/10.1023/A:1021195804379
- W. M. Wright, General linear methods with inherent Runge-Kutta stability, PhD thesis, The University of Auckland, 2003.
- J. C. Butcher, and W. M. Wright, The construction of practical general linear methods, BIT 43, (2003), 695-721. https://doi.org/10.1023/B:BITN.0000009952.71388.23
- J.C. Butcher and Z. Jackiewicz, Construction of general linear methods with Runge-Kutta stability properties, Numer. Alg. 36 (2004), 53-72. https://doi.org/10.1023/B:NUMA.0000027738.54515.50
- S. E. Ogunfeyitimi and M. N. O. Ikhile, Second Derivative Generalized extended Backward Differentiation formulas for stiff problems, J. Korean Soc. Ind. Appl. Math., 23(3), 179-202. https://doi.org/10.12941/jksiam.2019.23.179
- S. E. Ogunfeyitimi and M. N. O. Ikhile, Multiblock Boundary value methods for Ordinary Differential and Differential Algebraic Equations, J. Korean Soc. Ind. Appl. Math., 24(3), 243-291. https://doi.org/10.12941/JKSIAM.2020.24.243
- P. O. Olatunji, Second Derivative Multistep methods with Nested Hybrid Evaluation, M.Sc. Thesis, Department of Mathematics, University of Benin, Nigeria, 2017.
- G. Yu Kulikov and S. K. Shindin, Numerical Tests with Gauss-Type Nested Implicit Runge-Kutta Formulas. ICCS, Part I, LNCS 4487, (2007), 136-143.
- G. Yu Kulikov and S. K. Shindin, Adaptive nested IRK formulas of Guass Type. Journal of Applied Numerical Mathematics, 59, (2009), 707-722. https://doi.org/10.1016/j.apnum.2008.03.019
- J. R. Cash, A Class of Implicit Runge-Kutta Methods for the Numerical Integration of Stiff ODEs, Journal of the ACM, 22, (1975), 504-511. https://doi.org/10.1145/321906.321915
- J. R. Cash and A. Singhal, Mono-implicit RKF for the Numerical Integration of Stiff Differential Equations, IMA Journal on Numerical Analysis, 2, (1982), 211-217. https://doi.org/10.1093/imanum/2.2.211
- P. O. Olatunji, and M. N. O. Ikhile, Modified Backward Differentiation Formulas with Recursively Nested Hybrid Evaluation; Journal of the Nigerian Association of Mathematical Physics, 40 (2017) 86-95.
- P. O. Olatunji and M. N. O. Ikhile, Second Derivative Multistep Method with Nested Hybrid Evaluation, Asian Research Journal of Mathematics, 11(4), (2018), 1-11.
- P. O. Olatunji and M. N. O. Ikhile, Variable order nested hybrid multistep methods for stiff ODEs, J. Math. Comput. Sci. 10(1), (2020), 78-94. https://doi.org/10.22436/jmcs.010.01.08
- P. O. Olatunji, M. N. O. Ikhile, and R. I. Okuonghae, Nested Second Derivative Two-step Runge-Kutta methods, Int. J. Appl. Compt. Math., 7(6), (2021), 1-39. https://doi.org/10.1007/s40819-020-00933-z
- P. O. Olatunji, Nested general linear methods for stiff differential equations and differential algebraic equations, Ph.D. Thesis, Department of Mathematics, University of Benin, Nigeria, 2021.
- P. Chartier, General linear methods for differential algebraic equations of index one and two, [Research Report] RR-1968, 1993.
- J.C. Butcher, Numerical methods for ordinary differential equivalent, John Willey & Sons, Ltd Chichester, 2016.