DOI QR코드

DOI QR Code

Recovery of Pure Ni(II) Compound by Precipitation from Hydrochloric Acid Solution Containing Si(IV)

규소(IV)가 함유된 염산용액으로부터 침전법에 의한 고순도 니켈(II)화합물의 회수

  • Moon, Hyun Seung (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University) ;
  • Song, Si Jeong (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University) ;
  • Tran, Thanh Tuan (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University) ;
  • Lee, Man Seung (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University)
  • 문현승 (목포대학교 공과대학 신소재공학과) ;
  • 송시정 (목포대학교 공과대학 신소재공학과) ;
  • ;
  • 이만승 (목포대학교 공과대학 신소재공학과)
  • Received : 2021.10.27
  • Accepted : 2021.11.12
  • Published : 2021.12.31

Abstract

Spent lithium-ion batteries are treated by reduction-smelting at high temperatures to recover valuable metals. Solvent extraction and precipitation of the HCl leaching solution of reduction-smelted metallic alloys resulted in a filtrate containing Ni(II) and a small amount of Si(IV). Adsorption and precipitation experiments were conducted to recover pure Ni(II) compounds from the filtrate. Si(IV) was selectively loaded onto polyacrylamide, but this method did not efficiently filter the solution due to an increase in viscosity. The addition of Na2CO3 as a precipitant to the filtrate led to the simultaneous precipitation of Ni(II) and Si(IV). However, it was possible to recover nickel oxalate with a purity higher than 99.99% by selectively precipitating Ni(II) with the addition of Na2C2O4 as a precipitant.

폐리튬이온배터리에 함유된 유가금속을 회수하기 위해 고온에서 용융환원처리한다. 용융환원된 금속상을 염산용액으로 침출한 다음 용매추출과 침전으로 유가금속을 분리한 여과액에는 니켈(II)과 미량의 규소(IV)가 함유되어 있다. 여액으로부터 고순도 니켈화합물을 회수하기 위해 흡착법에 의한 규소(IV)의 분리와 니켈(II)의 선택적 침전에 대해 조사했다. Polyacrylamide는 규소(IV)를 선택적으로 흡착했으나 용액의 점도 역시 증가하여 여과가 어렵다. 침전제로 탄산나트륨을 첨가하면 니켈(II)과 미량의 규소(IV)가 공침되었다. 반면 옥살산나트륨은 상온에서 니켈(II)만을 선택적으로 침전시켜 순도 99.99% 이상의 니켈옥살산염 결정상을 회수할 수 있었다.

Keywords

Acknowledgement

본 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구결과(과제번호 20011183)이며 이에 감사 드립니다.

References

  1. Zhao, Y., Pohl, O., Bhatt, A. I., et al., 2021 : A Review on Battery Market Trends, Second-Life Reuse, Sustainable Chemistry, 2, pp.167-205. https://doi.org/10.3390/suschem2010011
  2. Li, J., Wang, G., Xu, Z., 2016 : Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries, Journal of Hazardous Materials, 302, pp.97-104. https://doi.org/10.1016/j.jhazmat.2015.09.050
  3. Kang, D. H. P., Chen, M., Ogunseitan, O. A., 2013 : Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste, Environmental Science & Technology, 47, pp.5495-5503. https://doi.org/10.1021/es400614y
  4. Natarajan, S., Aravindan, V., 2018 : Burgeoning prospects of spent lithium-ion batteries in multifarious applications, Advanced Energy Materials, 8(33), pp.1-16.
  5. Boland, M. A., 2012 : Nickel-Makes Stainless Steel Strong, USGS Mineral Resources Program, 3024.
  6. Gaines, L., 2014 : The future of automotive lithium-ion battery recycling: Charting a sustainable course, Sustainable Materials and Technologies, 1-2, pp.2-7. https://doi.org/10.1016/j.susmat.2014.10.001
  7. Velazquez-Martinez, O., Valio, J., Santasalo-Aarnio, A., et al., 2019 : A Critical Review of Lithium-Ion Battery Recycling Processes from a Circular Economy Perspective, Batteries, 5(68), pp.1-33.
  8. Gupta, B., Deep, A., Singh, V., et al., 2003 : Recovery of cobalt, nickel, and copper from sea nodules by their extraction with alkylphosphines, Hydrometallurgy, 70, pp. 121-129. https://doi.org/10.1016/S0304-386X(03)00052-5
  9. Tran, T. T., Moon, H. S., Lee, M. S., 2021 : Co, Ni, Cu, Fe, and Mn integrated recovery process via sulphuric acid leaching from spent lithium-ion batteries smelted reduction metallic alloys, Mineral Processing and Extractive Metallurgy Review, pp.1-15.
  10. Moon, H. S., Tran, T. T., Lee, M. S., 2021 : Leaching of Smelting Reduced Metallic Alloy of Spent Lithium Ion Batteries by the Mixture of Hydrochloric Acid and H2O2, Resources Recycling, 30(5), pp.25-31. https://doi.org/10.7844/KIRR.2021.30.5.25
  11. Nguyen, T. T. N., Song, S. J., Lee, M. S., 2020 : Development of a hydrometallurgical process for the recovery of pure alumina from black dross and synthesis of magnesium spinel, J Mater Res Technol, 9(2), pp.2568-2577. https://doi.org/10.1016/j.jmrt.2019.12.087
  12. Le, M. N., Lee, M. S., 2020 : Separation of Al(III), Mo(VI), Ni(II), and V(V) from medel hydrochloric acid leach solutions of spent petroleum catalyst by solvent extraction, J Chem Technol Biotechnol, 95, pp.2886-2897. https://doi.org/10.1002/jctb.6448
  13. Guillard, D., Lewis, A. E., 2001 : Nickel Carbonate Precipitation in a Fluidized-Bed Reactor, Industrial & Engineering Chemistry Research, 40(23), pp.5564-5569. https://doi.org/10.1021/ie010312q
  14. Allen, J. A., 1953 : The precipitation of nickel oxalate, The Journal of Physical Chemistry, 57(7), pp.715-716. https://doi.org/10.1021/j150508a027
  15. Lee, C. S., Pobinson, J., Chong, M. F., 2014 : A review on application of flocculants in wastewater treatment, Process Safety and Environmental Protection, 92, pp.489-508. https://doi.org/10.1016/j.psep.2014.04.010
  16. Pavlidou, S., Papaspyrides, C. D., 2008 : A review on polymer-layered silicate nanocomposites, Progress in Polymer Science. 33, pp.1119-1198. https://doi.org/10.1016/j.progpolymsci.2008.07.008
  17. Bessaies-Bey, H., Fusier, J., Hanafi, M., et al., 2019 : Competitive adsorption of PAM and HPAM on siliceous material, Colloids and Surfaces A, 579, 123673. https://doi.org/10.1016/j.colsurfa.2019.123673
  18. Chuge, K. D., Bhat, A. N., Babu, G. P., 1993 : Identification of nickel species and their interaction with the support in Ni-silica catalyst precursor, Applied Catalysis A: General, 103, pp.183-204. https://doi.org/10.1016/0926-860X(93)85051-P