DOI QR코드

DOI QR Code

Energy-Efficient MEC Offloading Decision Algorithm in Industrial IoT Environments

산업용 IoT 환경에서 MEC 기반의 에너지 효율적인 오프로딩 결정 알고리즘

  • Received : 2021.07.06
  • Accepted : 2021.08.23
  • Published : 2021.11.30

Abstract

The development of the Internet of Things(IoT) requires large computational resources for tasks from numerous devices. Mobile Edge Computing(MEC) has attracted a lot of attention in the IoT environment because it provides computational resources geographically close to the devices. Task offloading to MEC servers is efficient for devices with limited battery life and computational capability. In this paper, we assumed an industrial IoT environment requiring high reliability. The complexity of optimization problem in industrial IoT environment with many devices and multiple MEC servers is very high. To solve this problem, the problem is divided into two. After selecting the MEC server considering the queue status of the MEC server, we propose an offloading decision algorithm that optimizes reliability and energy consumption using genetic algorithm. Through experiments, we analyze the performance of the proposed algorithm in terms of energy consumption and reliability.

사물인터넷의 발전으로 인하여 수많은 디바이스가 생겨나고, 큰 계산 자원을 요구하는 태스크들이 많이 발생된다. 이런 사물인터넷 환경에서 Mobile Edge Computing(MEC)는 지리적으로 사용자와 근접하여 서비스를 제공하기 때문에 많은 주목을 받고 있다. MEC 서버로의 태스크 오프로딩은 제한된 배터리 수명과 계산 능력을 갖고 있는 디바이스에게 효율적이다. 본 연구는 높은 신뢰도를 요구하는 산업용 IoT 환경을 가정하였다. 많은 디바이스와 여러 MEC 서버와 같은 환경으로 최적화에 있어서 복잡성이 발생한다. 이를 해결하기 위해 문제를 두 개로 나눠 해결한다. MEC 서버의 큐 상태를 고려하여 큐의 제한 길이를 충족하는 MEC 서버를 선택한 뒤, 유전 알고리즘을 사용하여 신뢰도를 고려하면서도 에너지 소모량을 최적화하는 오프로딩 결정 알고리즘을 제시한다. 본 연구는 실험을 통하여 에너지 소모량과 신뢰성 측면에서 제안 알고리즘의 성능이 효율적임을 분석하였다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1047113).

References

  1. T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, "On Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge Cloud Architecture and Orchestration," IEEE Communications Surveys & Tutorials, Vol.19, No.3, pp.1657-1681, 2017. https://doi.org/10.1109/COMST.2017.2705720
  2. E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, "Industrial Internet of Things: Challenges, Opportunities, and Directions," IEEE Transactions on Industrial Informatics, Vol.14, No.11, pp.4724-4734, 2018. https://doi.org/10.1109/tii.2018.2852491
  3. F. Chiti, R. Fantacci, and B. Picano, "A Matching Theory Framework for Tasks Offloading in Fog Computing for IoT Systems," IEEE Internet of Things Journal, Vol.5, No.6, pp. 5089-5096, 2018. https://doi.org/10.1109/JIOT.2018.2871251
  4. H. Liu, L. Cao, T. Pei, Q. Deng, and J. Zhu, "A Fast Algorithm for Energy-Saving Offloading with Reliability and Latency Requirements in Multi-Access Edge Computing," IEEE Access, Vol.8, pp.151-161, 2020. https://doi.org/10.1109/access.2019.2961453
  5. Qiuping Li, Junhui Zhao, Yi Gong, and Qingmiao Zhang, "Energy-Efficient Computation Offloading and Resource Allocation in Fog Computing for Internet of Everything," China Communications, Vol.16, No.3, pp.32-41, 2019. https://doi.org/10.12676/j.cc.2019.03.004
  6. J. Kennedy and R. Eberhart, "Particle swarm optimization," Proceedings of ICNN'95 - International Conference on Neural Networks, Vol.4, pp.1942-1948, 1995.
  7. L. Davis, "Handbook of genetic algorithms," CumInCAD, 1991.
  8. J. Bi, H. Yuan, S. Duanmu, M. Zhou, and A. Abusorrah, "Energy-Optimized Partial Computation Offloading in Mobile-Edge Computing With Genetic Simulated-Annealing-Based Particle Swarm Optimization," IEEE Internet of Things Journal, Vol.8, No.5, pp.3774-3785, Mar. 2021. https://doi.org/10.1109/JIOT.2020.3024223
  9. Z. Li and Q. Zhu, "Genetic Algorithm-based Optimization of Offloading and Resource Allocation in Mobile-Edge Computing," Information, Vol.11, No.2, pp.2-11, 2020.
  10. K. Peng, B. Zhao, S. Xue, and Q. Huang, "Energy- and Resource-Aware Computation Offloading for Complex Tasks in Edge Environment," Complexity, Vol. 2020, 2020.
  11. T. Q. Dinh, Q. D. La, T. Q. S. Quek, and H. Shin, "Learning for Computation Offloading in Mobile Edge Computing," IEEE Transactions on Communications, Vol.66, No.12, pp.6353-6367, 2018. https://doi.org/10.1109/tcomm.2018.2866572
  12. K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas, "Joint Service Placement and Request Routing in Multi-cell Mobile Edge Computing Networks," IEEE Conference on Computer Communications (INFOCOM), pp.10-18, Apr. 2019.