DOI QR코드

DOI QR Code

Metal-organic frameworks-driven ZnO-functionalized carbon nanotube fiber for NO2 sensor

  • Woo, Sungyoon (Division of Materials Science and Engineering, Hanyang University) ;
  • Jo, Mingyeong (Division of Materials Science and Engineering, Hanyang University) ;
  • Lee, Joon-Seok (Division of Materials Science and Engineering, Hanyang University) ;
  • Choi, Seung-Ho (Division of Materials Science and Engineering, Hanyang University) ;
  • Lee, Sungju (Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST)) ;
  • Jeong, Hyeon Su (Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST)) ;
  • Choi, Seon-Jin (Division of Materials Science and Engineering, Hanyang University)
  • 투고 : 2021.10.15
  • 심사 : 2021.11.26
  • 발행 : 2021.11.30

초록

In this study, heterogeneous ZnO/CNTF composites were developed to improve the NO2-sensing response, facilitated by the self-heating property. Highly conductive and mechanically stable CNTFs were prepared by a wet-spinning process assisted by the liquid crystal (LC) behavior of CNTs. Metal-organic frameworks (MOFs) of ZIF-8 were precipitated on the surface of the CNTF (ZIF-8/CNTF) via one-pot synthesis in solution. The subsequent calcination process resulted in the formation of the ZnO/CNTF composites. The calcination temperatures were controlled at 400, 500, and 600 ℃ in an N2 atmosphere to confirm the evolution of the microstructures and NO2-sensing properties. Gas sensor characterization was performed at 100 ℃ by applying a DC voltage to induce Joule heating through the CNTF. The results revealed that the ZnO/CNTF composite after calcination at 500 ℃ (ZnO/CNTF-500) exhibited an improved response (Rair/Rgas = 1.086) toward 20 ppm NO2 as compared to the pristine CNTF (Rair/Rgas = 1.063). Selective NO2-sensing properties were demonstrated with negligible responses toward interfering gas species such as H2S, NH3, CO, and toluene. Our approach for the synthesis of MOF-driven ZnO/CNTF composites can provide a new strategy for the fabrication of wearable gas sensors integrated with textile materials.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2020R1C1C1010336). This work was also supported by the U.S. Army Combat Capabilities Development Command Soldier Center (DEVCOM SC) and International Technology Center Pacific (ITC-PAC) Global Research Project under contract FA520920P0130, and conducted at Hanyang University.

참고문헌

  1. W. Huang, X. Zhuang, F. S. Melkonyan, B. Wang, L. Zeng, G. Wang, S. Han, M. J. Bedzyk, J. Yu, and T. J. Marks, "UV-Ozone interfacial modification in organic transistors for high-sensitivity NO2 detection", Adv. Mater., Vol. 29, No. 31, pp. 1701706(1)-1701706(11), 2017. https://doi.org/10.1002/adma.201701706
  2. S. Cole and E. Gray, New NASA Satellite Maps Show Human Fingerprint on Global Air Quality, NASA, RELEASE 15-233, 2015
  3. B. Yoon and S. J. Choi, "Selective acetate recognition and sensing using SWCNTs functionalized with croconamides", Sens. Actuators B-Chem, Vol. 346, pp. 130461(1)-130461(8), 2021.
  4. S. J. Choi, B. Yoon, J. D. Ray, A. Netchaev, L. C. Moores, and T. M. Swager, "Chemiresistors for the Real-Time Wireless Detection of Anions", Adv. Func. Mater., Vol. 30, No. 7, pp. 1907087(1)-1907087(9), 2020. https://doi.org/10.1002/adfm.201907087
  5. S. J. Choi, D. M. Lee, H. Yu, J. S. Jang, M. H. Kim, J. Y. Kang, H. S. Jeong, and I. D. Kim, "All-carbon fiber-based chemical sensor: Improved reversible NO2 reaction kinetics", Sens. Actuators B-Chem, Vol. 290, pp. 293-301, 2019. https://doi.org/10.1016/j.snb.2019.03.134
  6. T. Kawano, H. C. Chiamori, M. Suter, Q. Zhou, B. D. Sosnowchik, and L. Lin, "An electrothermal carbon nanotube gas sensor", Nano Lett., Vol. 7, No. 12, pp. 3686-3690, 2007. https://doi.org/10.1021/nl071964s
  7. J. Y. Kang, W. T. Koo, J. S. Jang, D. H. Kim, Y. J. Jeong, R. Kim, J. Ahn, S. J. Choi, and I. D. Kim, "2D layer assembly of Pt-ZnO nanoparticles on reduced graphene oxide for flexible NO2 sensors", Sens. Actuators B-Chem, Vol. 331, pp. 129371(1)-129371(10), 2021.
  8. S. J. Choi, D. M. Lee, H. Yu, J. S. Jang, M. H. Kim, J. Y. Kang, H. S. Jeong, and I. D. Kim, "All-carbon fiber-based chemical sensor: Improved reversible NO2 reaction kinetics", Sens. Actuators B-Chem, Vol. 290, pp. 293-301, 2019. https://doi.org/10.1016/j.snb.2019.03.134
  9. H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O'Keeffe, and J. Kim, "Ultrahigh porosity in metal-organic frameworks", Science, Vol. 329, No. 5990, pp. 424-428, 2010. https://doi.org/10.1126/science.1192160
  10. O. K. Farha, A. O. Yazaydin, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr, and J. T. Hupp, "De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities", Nat. Chem., Vol. 2, No. 11, pp. 944-948, 2010. https://doi.org/10.1038/nchem.834
  11. W. T. Koo, J. S. Jang, and I. D. Kim, "Metal-organic frameworks for chemiresistive sensors", Chem, Vol. 5, No. 8, pp. 1938-1963, 2019. https://doi.org/10.1016/j.chempr.2019.04.013
  12. D. J. Tranchemontagne, J. L. Mendoza-Cortes, M. O'Keeffe, and O. M. Yaghi, "Secondary building units, nets and bonding in the chemistry of metal-organic frameworks", Chem. Soc. Rev., Vol. 38, No. 5, pp. 1257-1283, 2009. https://doi.org/10.1039/b817735j
  13. P. Pachfule, B. K. Balan, S. Kurungot, and R. Banerjee, "One-dimensional confinement of a nanosized metal organic framework in carbon nanofibers for improved gas adsorption", Chem. Commun., Vol. 48, No. 14, pp. 2009-2011, 2012. https://doi.org/10.1039/c2cc16877d
  14. Y. Zhang, X. Bo, C. Luhana, H. Wang, M. Li, and L. Guo, "Facile synthesis of a Cu-based MOF confined in maroporous carbon hybrid material with enhanced electro-catalytic ability", Chem. Commun., Vol. 49, No. 61, pp. 6885-6887, 2013. https://doi.org/10.1039/c3cc43292k
  15. Y. Zhang, X. Bo, A. Nsabimana, C. Han, M. Li, and L. Guo, "Electrocatalytically active cobalt-based metal-organic framework with incorporated macroporous carbon composite for electrochemical applications", J. Mater. Chem. A, Vol. 3, No. 2, pp. 732-738, 2015. https://doi.org/10.1039/C4TA04411H
  16. C. Petit, and T. J. Bandosz, "Exploring the coordination chemistry of MOF-graphite oxide composites and their applications as adsorbents", Dalton Trans., Vol. 41, No. 14, pp. 4027-4035, 2012. https://doi.org/10.1039/c2dt12017h
  17. Z. Xiang, Z. Hu, D. Cao, W. Yang, J. Lu, B. Han, and W. Wang, "Metal-organic frameworks with incorporated carbon nanotubes: improving carbon dioxide and methane storage capacities by lithium doping", Angew. Chem., Int. Ed., Vol. 50, No. 2, pp. 491-494, 2011. https://doi.org/10.1002/anie.201004537
  18. Y. Yang, L. Ge, V. Rudolph, and Z. Zhu, "In situ synthesis of zeolitic imidazolate frameworks/carbon nanotube composites with enhanced CO2 adsorption", Dalton Trans., Vol. 43, No. 19, pp. 7028-7036, 2014. https://doi.org/10.1039/c3dt53191k
  19. R. Lin, L. Ge, S. Liu, V. Rudolph, and Z. Zhu, "Mixed-matrix membranes with metal-organic framework-decorated CNT fillers for efficient CO2 separation", ACS Appl. Mater. Interfaces, Vol. 7, No. 27, pp. 14750-14757, 2015. https://doi.org/10.1021/acsami.5b02680
  20. A. W. Thornton, K. M. Nairn, J. M. Hill, A. J. Hill, and M. R. Hill, "Metal-organic frameworks impregnated with magnesium-decorated fullerenes for methane and hydrogen storage", J. Am. Chem. Soc., Vol. 131, No. 30, pp. 10662-10669, 2009. https://doi.org/10.1021/ja9036302
  21. W. T. Koo, S. J. Choi, S. J. Kim, J. S. Jang, H. L. Tuller, and I.-D. Kim, "Heterogeneous sensitization of metal-organic framework driven metal@metal oxide complex catalysts on an oxide nanofiber scaffold toward superior gas sensors", J. Am. Chem. Soc., Vol. 138, No. 40, pp. 13431-13437, 2016. https://doi.org/10.1021/jacs.6b09167
  22. S. J. Choi, H. Yu, J. S. Jang, M. H. Kim, S. J. Kim, H. S. Jeong, and I. D. Kim, "Nitrogen-Doped Single Graphene Fiber with Platinum Water Dissociation Catalyst for Wearable Humidity Sensor", Small, Vol. 14, No. 13, pp. 1703934(1)-1703934(9), 2018. https://doi.org/10.1002/smll.201703934
  23. J. Wei, Y. Hu, Y. Liang, B. Kong, J. Zhang, J. Song, Q. Bao, G. P. Simon, S. P. Jiang, and H. Wang, "Nitrogen-doped nanoporous carbon/graphene nano-sandwiches: Synthesis and application for efficient oxygen reduction", Adv. Func. Mater., Vol. 25, No. 36, pp. 5768-5777, 2015. https://doi.org/10.1002/adfm.201502311
  24. P. Lin, L. Meng, Y. Huang, L. Liu, and D. Fan, "Simultaneously functionalization and reduction of graphene oxide containing isocyanate groups", Appl. Surf. Sci., Vol. 324, pp. 784-790, 2015. https://doi.org/10.1016/j.apsusc.2014.11.038