과제정보
본 연구는 과학기술정보통신부 재원의 정보통신기획평가원의 ICT명품인재양성 사업 (IITP-2021-2020-0-01819), 교육부 재원의 한국연구재단의 기초연구사업 (No. NRF-2021R1A6A1A13044830), 그리고 과학기술정보통신부 재원의 한국연구재단의 초융합AI원천기술개발사업 (NRF-2019M3E5D2A01063819)의 지원을 받아 수행되었음.
참고문헌
- K. Lee and W.-K. Jeong, "ISCL: Interdependent self-cooperative learning for unpaired image denoising," IEEE Trans. Med. Imag., vol. 40, no. 11, pp. 3238-3248, 2021. [Online]. Available: https://doi.org/10.1109/TMI.2021.3096142
- D. G. C. Hildebrand, B. J. Graham, and W.-C. A. Lee, "Grid-tape for fast nanoscale imaging," 2017.
- B. J. Graham, D. G. C. Hildebrand, and W.-C. A. Lee, "Grid-tape imaging stage," 2018.
- B. J. Graham, D. G. C. Hildebrand, A. T. Kuan, J. T. Maniates-Selvin, L. A. Thomas, B. L. Shanny, and W.-C. A. Lee, "High-throughput transmission electron microscopy with automated serial sectioning," bioRxiv, 2019. [Online]. Available: https://www.biorxiv.org/content/early/2019/06/02/657346
- T. Minh Quan, D. Grant Colburn Hildebrand, K. Lee, L. A. Thomas, A. T. Kuan, W.-C. Allen Lee, and W.-K. Jeong, "Removing imaging artifacts in electron microscopy using an asymmetrically cyclic adversarial network without paired training data," in Proc. IEEE Int. Conf. Comput. Vis. Workshop, Oct. 2019.
- K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, "Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising," IEEE Trans. Image Process., vol. 26, no. 7, pp. 3142-3155, Jul. 2017. https://doi.org/10.1109/TIP.2017.2662206
- Z. Huang, Z. Chen, Q. Zhang, G. Quan, M. Ji, C. Zhang, Y. Yang, X. Liu, D. Liang, H. Zheng, et al., "Cagan: a cycle-consistent generative adversarial network with attention for low-dose ct imaging," IEEE Trans. Comput. Imag., vol. 6, pp. 1203-1218, 2020. https://doi.org/10.1109/tci.2020.3012928
- D. Bashkirova, B. Usman, and K. Saenko, "Adversarial self-defense for cycle-consistent gans," in Proc. Adv. Neural Inf. Process. Syst, vol. 32, 2019.
- J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, "Unpaired image-to-image translation using cycle-consistent adversarial networks," in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 2223-2232.
- K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image denoising by sparse 3-d transform-domain collaborative filtering," IEEE Trans. Image Process., vol. 16, no. 8, pp. 2080-2095, Aug. 2007. https://doi.org/10.1109/TIP.2007.901238
- S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," ser. Proc. Int. Conf. Mach. Learn., F. Bach and D. Blei, Eds., vol. 37, Lille, France, Jul. 2015, pp. 448-456.
- J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, and T. Aila, "Noise2Noise: Learning image restoration without clean data," in Proc. Int. Conf. Mach. Learn., J. Dy and A. Krause, Eds., vol. 80, Jul. 2018, pp. 2965-2974.
- K. Lee and W.-K. Jeong, "Noise2kernel: Adaptive self-supervised blind denoising using a dilated convolutional kernel architecture," 2020. [Online]. Available: https://arxiv.org/abs/2012.03623
- A. Krull, T.-O. Buchholz, and F. Jug, "Noise2void-learning denoising from single noisy images," in Proc. IEEE conf. Comput. Vis. Pattern Recognit., Jun. 2019, pp. 2129-2137.
- J. Batson and L. Royer, "Noise2Self: Blind denoising by self-supervision," in Proc. Int. Conf. Mach. Learn., Mar. 2019, pp. 524-533.
- Y. Quan, M. Chen, T. Pang, and H. Ji, "Self2Self with dropout: Learning self-supervised denoising from single image," in Proc. IEEE conf. Comput. Vis. Pattern Recognit., Jun. 2020, pp. 1890-1898.
- H. Liao, W.-A. Lin, S. K. Zhou, and J. Luo, "Adn: Artifact disentanglement network for unsupervised metal artifact reduction," IEEE Trans. Med. Imag., vol. 39, no. 3, pp. 634-643, 2019. https://doi.org/10.1109/tmi.2019.2933425
- Y. Huang, W. Xia, Z. Lu, Y. Liu, H. Chen, J. Zhou, L. Fang, and Y. Zhang, "Noise-powered disentangled representation for unsupervised speckle reduction of optical coherence tomography images," IEEE Trans. Med. Imag., 2020.
- H. Nam and H.-E. Kim, "Batch-instance normalization for adaptively style-invariant neural networks," in Proc. Adv. Neural Inf. Process. Syst, vol. 31, 2018, pp. 2558-2567.
- D. Ulyanov, A. Vedaldi, and V. Lempitsky, "Instance normalization: The missing ingredient for fast stylization," 2016. [Online]. Available: https://arxiv.org/abs/1607.08022
- P. Luo, R. Zhang, J. Ren, Z. Peng, and J. Li, "Switchable normalization for learning-to-normalize deep representation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 2, pp. 712-728, 2019.
- J. L. Ba, J. R. Kiros, and G. E. Hinton, "Layer normalization," 2016. [Online]. Available: https://arxiv.org/abs/1607.06450
- T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, "Spectral normalization for generative adversarial networks," in Proc. Int. Conf. Learn. Represent, 2018.
- A. Brock, J. Donahue, and K. Simonyan, "Large scale gan training for high fidelity natural image synthesis," in Proc. Int. Conf. Learn. Represent, 2018.
- M. Arjovsky, S. Chintala, and L. Bottou, "Wasserstein generative adversarial networks," in Proc. Int. Conf. Mach. Learn., vol. 70, Aug. 2017, pp. 214-223.
- I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, "Improved training of wasserstein gans," in Proc. Adv. Neural Inf. Process. Syst, 2017, pp. 5767-5777.
- H. Chen, Y. Zhang, M. K. Kalra, F. Lin, Y. Chen, P. Liao, J. Zhou, and G. Wang, "Low-dose ct with a residual encoder-decoder convolutional neural network," IEEE Trans. Med. Imag., vol. 36, no. 12, pp. 2524-2535, 2017. https://doi.org/10.1109/TMI.2017.2715284
- Z. Hong, X. Fan, T. Jiang, and J. Feng, "End-to-end unpaired image denoising with conditional adversarial networks," in Proc. Assoc. Adv. Artific. Intell., Apr. 2020, pp. 4140-4149.
- Y. Wu and K. He, "Group normalization," in Eur. Conf. Comput. Vis., 2018, pp. 3-19.