DOI QR코드

DOI QR Code

기계식 추진 시스템 제어를 위한 가스터빈 엔진 모델링 및 시뮬레이션

Modeling and Simulation of a Gas Turbine Engine for Control of Mechanical Propulsion Systems

  • Back, Kyeongmi (Department of Aerospace Engineering, Graduate School of Chungnam National University) ;
  • Huh, Hwanil (Department of Aerospace Engineering, Chungnam National University) ;
  • Ki, Jayoung (ESND)
  • 투고 : 2021.01.22
  • 심사 : 2021.08.07
  • 발행 : 2021.08.31

초록

본 연구에서는 기계식 추진 시스템인 CODOG 구조의 통합 제어를 위하여 구성 모듈인 가스터빈 엔진의 성능 모델링 및 시뮬레이션을 수행하였다. 엔진 모델은 상위 제어기 및 타 구성 모듈과의 통합이 용이하도록 MATLAB/Simulink를 이용하였으며, 시스템의 구성 및 목적에 맞는 입/출력 설정이 가능하도록 구성하였다. 일반적으로 엔진 제작사는 엔진 및 구성요소의 성능 데이터를 제공하지 않는다. 따라서 가스터빈 엔진에 대한 모델링 기법으로 구성요소의 맵을 스케일링하여 성능 데이터를 확보하는 CMF 기법을 적용하였다. 생성한 모델 및 시뮬레이션 프로그램을 이용하여 정상상태 및 동적 해석 시험을 수행하였으며, 최종 출력 결과에 대해 최대 오차 5% 이내의 신뢰성을 확보하였다.

In this study, performance modeling and simulation of a gas turbine engine, a constituent module, was performed for the integrated control of the CODOG structure, mechanical propulsion systems. The engine model used MATLAB/Simulink to facilitate integration with the host controller and other components, and was configured to enable input/output settings suitable for the system configuration and purpose. In general, engine manufacturers do not provide performance data for the engine and components. Therefore, as a modeling method for a gas turbine, a CMF method that obtains performance data by scaling the map of components was applied. Using the generated model and simulation program, steady-state and dynamic simulation analysis tests were performed, and reliability within 5% of the maximum error was secured for the final output of power.

키워드

참고문헌

  1. Oh, K.W., "Navy Times(October-November 2020)," Issue Journal of Korea Society for Advanced Technology Fusion, Vol. 13, No. 1, p. 13, 2020.
  2. Back, K.M., "Dynamic Modeling of an Gas Turbine Engine Module for Integrated Propulsion Systems," Master's Thesis, Department of Aerospace Engineering, Chungnam National University, Daejeon, Korea, 2021.
  3. Lee, H.M. and Cho, B.J., "Analysis of Development Trend for the Integrated Power System of Naval Vessels to Perform the High-Power and Energy Mission Load Platform," Journal of Korean Society of Marine Engineering, Vol. 35, No. 6, pp. 796-801, 2011.
  4. Jung, S.Y., "The Development of Warship Propulsion System Simulator for ECS reliability," Ph.D.'s Thesis, Department of Mechatronics, Korea Maritime & Ocean University, Yeongdo, Busan, Korea, 2016.
  5. Cha, S.W., Ki, J.Y., Son, N.Y., Kim, D.J., Shim, J.S., Kim, M.H. and Park, S.K., "Development of a Dynamic Simulation Mathematical Model of a 2-Spool Marine Gas Turbine Engine," Journal of the Korean Society of Marine Enginering, Vol. 43, No. 9, pp. 65-60, 2019.
  6. Kong, C.D. and Ki, J.Y., "A Dynamic Simulation for Small Turboshaft Engine with Free Power Turbine Using the CMF Method, " Journal of the Korean Society of Propulsion Engineers, Vol. 2, No. 1, pp. 13-20, 1998.
  7. Elias, T., Modeling, Simulation and Optimization of Wind Farms and Hybrid Systems, IntechOpen, London, U.K., Ch. A Dynamic Performance Model for Hybrid Wind/Gas Power Plants, 2020.
  8. Pradeep, K.N., Tourlidakis, A. and Pilidis, P., "Performance Review: PBMR Closed Cycle Gas Turbine Power Plant, 49th IAEA Conference, Vienna, Austria, pp. 99-112, Nov. 2000.
  9. Elias, T., Nader, M., Mohieddine, B. and Khashayar, K., "Dynamic Performance Simulation of an Aeroderivative Gas Turbine Using the MATLAB Simulink Environment," IMECE 2013, California, U.S.A., Nov. 2013.
  10. Kurzke, J., "GasTurb 11 Manual: Design and Off-Design Performance of Gas Turbines," GasTurb GmbH, Aachen, Germany, 2007.
  11. "LM2500," retrieved 27 July. 2021 from https://www.gereports.kr.
  12. GE Aviation, "LM2500 Data Sheet".
  13. Back, K.M., Ki, J.Y. and Huh, H.I., "Study on Performance Modeling of a MT30 Gas Turbine Engine for Marine Ship Applications," Journal of the Korean Society of Propulsion Engineers, Vol. 25, No. 1, 2021.
  14. Sellers, J.F. and Daniele, C.J., "DYNGEN-A Program for Calculating Steady-state and Transient Performance of Turbojet and Turbofan Engines," NASATN D-7901, 1975.
  15. Hong, Y.S., Basic Theory of Gas Turbine, 2nd ed., Chung Moon Gak, Paju, Gyeonggido, Ch. 2, 2004.
  16. Walsh, P.P. and Fletcher, P., Gas Turbine Performance, 2nd ed., Blackwell Science lnc., Oxford, U.K., Ch. 2-3, 1998.
  17. SAE International, "AIR4548: Real-time Modeling Methods for Gas Turbine Engine Performance," 1995.