DOI QR코드

DOI QR Code

초임계 탄화수소계열 혼합유체의 이중 충돌 제트 분무 가시화

Visualization of Doublet Impinging Jet Spray in Supercritical Mixed Hydrocarbon Fluid

  • Song, Juyeon (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Choi, Myeung Hwan (Department of Smart Drone Convergence, Korea Aerospace University) ;
  • An, Jeongwoo (Department of Smart Drone Convergence, Korea Aerospace University) ;
  • Koo, Jaye (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 투고 : 2021.04.26
  • 심사 : 2021.06.04
  • 발행 : 2021.08.31

초록

대체모델을 사용한 탄화수소계열 혼합유체를 아임계 및 초임계 상태에서 이중 충돌 분무를 통해 분무 메커니즘을 가시화하여 분석하였다. 임계압력과 온도가 다른 데칸과 메틸사이클로헥산을 대체모델로 선정하였다. 챔버 내부에 이중 충돌 인젝터를 설치하여 아임계 및 초임계 상태에서 고속카메라를 통해 분무를 가시화하였다. 혼합유체의 분사 및 챔버 환산압력은 Pr(P/Pc)=1로 유사하게 유지하였으며 Tr(T/Tc)은 0.48에서 1.02까지 증가시켰다. Tr이 증가할수록 혼합유체의 물성치가 각각의 임계점에 도달하여 분무각은 증가하고 시트분열길이는 감소하였다. 또한 혼합 유체가 모두 근임계점에 도달하였을 때 이중 충돌 분열 메커니즘에서 벗어나 밀도 구배의 변화가 크게 관측됨을 보였다.

Based on surrogate model, a hydrocarbon mixture was analyzed by visualizing the impinging break up mechanism in subcritical and supercritical conditions. Decane and methylcyclohexane with different critical pressures and temperatures were selected as experimental fluids. The impinging injector was installed inside the chamber, and the spray was visualized through a speed camera in subcritical and supercritical conditions. The injection condition of the mixture and chamber was kept constant at Pr(P/Pc) = 1, and Tr(T/Tc) was increased from 0.48 to 1.02. As Tr increased, the spray angle increased, and the sheet length decreased as the properties of the mixture reached each critical point. In addition, when the mixture approached the near critical point, it was shown that the change in density gradient was largely observed out of the impinging break up mechanism.

키워드

과제정보

본 연구는 개인기초연구지원사업(2016R1D1A1B04934852)의 지원 및 한국연구재단의 4단계 두뇌한국21 사업(과제번호: 5199990714521)의 지원을 받아 작성되었습니다.

참고문헌

  1. Doungthip, T., Ervin, J.S., Williams, T.F. and Bento, J., "Studies of Injection of Jet Fuel at Supercritical Conditions," Industrial & Engineering Chemical Research, Vol. 41, No. 23, pp. 5856-5866, 2002. https://doi.org/10.1021/ie0109915
  2. Zeaton, G., Crook, L., Guildenbecher, D. and Sojka, P.E., "An Experimental Study of Supercritical Fluid Jets," Proceedings of the 19th European Conference on Liquid Atomization and Spray System, Toronto, Ontario, Canada, 2005.
  3. Kim, D., Lee, I. and Koo, J., "Macroscopic Spray Characteristics of a Porous Injector," Atomization and Sprays, Vol. 24, No. 1, pp. 1-22, 2014. https://doi.org/10.1615/AtomizSpr.2013006408
  4. Song, J., "Spray Characteristics of Supercritical Mixed Hydrocarbon Fluid," Master's Thesis, Department of Mechanical and Aerospace Engineering, Korea Aerospace University, 2021.
  5. Song, J., Song, W. and Koo, J., "Visualization of Supercritical Mixed Hydrocarbon-Fuel Droplet," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 48, No. 9, pp. 711-716, 2020. https://doi.org/10.5139/JKSAS.2020.48.9.711
  6. Yang, V., Nienchuan, N. and Shuen, J.S., "Vaporization of Liquid Oxygen (LOX) Droplets in Supercritical Hydrogen Environments," Combustion Science and Technology, Vol. 97, Issue 4-6, pp. 247-270, 1994. https://doi.org/10.1080/00102209408935380
  7. Wang, N., Zhou, J., Pan, Y. and Wang, H., "Experimental Investigation on Flow Patterns of RP-3 Kerosene under Sub-critical and Supercritical Pressures," Acta Astronautica, Vol. 94, No. 2, pp. 834-842, 2014. https://doi.org/10.1016/j.actaastro.2013.10.008