DOI QR코드

DOI QR Code

시설 고추재배지에서 꽃노랑총채벌레 집합페로몬과 식물 휘발성 유인제 효능의 한계성

Limitation in Attraction Efficacy of Aggregation Pheromone or Plant Volatile Lures to Attract the Western Flower Thrips, Frankliniella occidentalis Infesting the Hot Pepper, Capsicum annuum, in Greenhouses

  • 투고 : 2021.09.28
  • 심사 : 2021.10.23
  • 발행 : 2021.12.01

초록

꽃노랑총채벌레(Frankliniella occidentalis) 방제 전략 가운데 하나로 대량유살 기술이 제기되었다. 이를 위해 본 연구는 이 해충에 적용되는 상용유인제의 효능을 시설 고추재배지를 중심으로 분석하였다. 총채벌레 모니터링에 사용되는 점착트랩의 경우 청색과 황색 색상에 따른 유인력 차이는 크지 않았다. 그러나 트랩의 위치는 큰 변수로서 기주에 가까이 위치할수록 포획 밀도가 높았다. 또한 상하 위치도 중요한 변수로서 기주 작물 수관 부위에서 가장 높은 포획 밀도를 보였다. 이를 기준으로 황색 점착 트랩을 설치한 경우 전체 총채벌레 밀도의 약 1%를 유살하였다. 이러한 낮은 유살 능력을 높이기 위해 상용유인제를 황색트랩에 추가하였다. 집합페로몬 또는 식물 휘발성 유인제(4-methoxybenzaldehyde) 성분의 두 가지 상용유인제 추가 처리는 황색트랩 단독 처리에 비해 크게 유인력을 증가시키지 못하였다. 그러나 Y-튜브 실내 행동분석은 집합페로몬과 식물 휘발성 유인제(methyl isonicotinate)들이 각각 꽃노랑총채벌레에 대해서 높은 유인력을 가지고 있는 것을 확인하였다. 반면에 이들 유인물질 은 기주 고추 꽃보다 꽃노랑총채벌레에 대해서 상대적으로 낮은 유인력을 나타냈다. 이는 꽃이 없는 시설 대파(Allium fistulosum) 재배지에서는 상용유인제 추가 처리가 황색트랩 단독 처리보다 꽃노랑총채벌레에 대하여 높은 유인력을 가지는 것을 미뤄 이 곤충의 꽃에 대한 높은 선호성을 뒷받침하였다. 본 연구는 꽃노랑총채벌레에 사용되는 상용유인제들의 한계성을 지적하며 추후 고추 꽃을 중심으로 새로운 유인물질의 탐색에 대한 기초자료를 제공한다.

Mass trapping of the western flower thrips, Frankliniella occidentalis, has been considered as an option to control this pest. This study applied the commercial lures to the hot pepper-cultivating greenhouses and assessed the enhancement of the attracting efficiency by adding to sticky traps. There was no color difference in the attracting efficiency between blue and yellow sticky traps. However, the installation position of the traps was crucial in the greenhouses. The more thrips were captured within host cropping area than outside areas of the crop. In vertical trap position, it was the most optimal to install the traps at the crop crown. Using these installation parameters, the yellow sticky traps captured approximately 1% population of the thrips. To enhance the trapping efficiency, the commercial lures containing aggregation pheromone or 4-methoxybenzaldehyde were added to the yellow sticky traps. However, these commercial lures did not significantly enhance the trapping efficiency compared to the yellow sticky trap alone. In contrast, Y-tube olfactometry assays confirmed the high efficiency of the aggregation pheromone or another plant volatile (methyl isonicotinate) to attract the thrips. Interestingly, these lure components had lower attracting efficiencies compared to the hot pepper flowers. The high attractive efficiency of the flowers was supported by the observation that the commercial lure was effective to enhance the trapping efficiency of the yellow sticky trap against F. occidentalis in Welsh onion (Allium fistulosum) field without any flowers. This study indicates the limitation of the commercial lures in application to hot pepper fields for the mass trapping of F. occidentalis. It also suggests active volatile component(s) from hot pepper flowers to attract F. occidentalis.

키워드

과제정보

본 논문은 농촌진흥청 공동연구사업(과제번호: PJ01578901)의 지원에 의해 이루어졌습니다.

참고문헌

  1. Broughton, S., Harrison, J., 2012. Evaluation of monitoring methods for thrips and the effect of trap colour and semiochemicals on sticky trap capture of thrips (Thysanoptera) and beneficial insects (Syrphidae, Hemerobiidae) in deciduous fruit trees in Western Australia. Crop Prot. 42, 156-163. https://doi.org/10.1016/j.cropro.2012.05.004
  2. Demirozer, O., Tyler-Julian, K., Funderburk, J., Leppla, N., Reitz, S., 2012. Frankliniella occidentalis (Pergande) integrated pest management programs for fruiting vegetables in Florida. Pest Manag. Sci. 68, 1537-1545. https://doi.org/10.1002/ps.3389
  3. Dingle, H., Drake, V.A., 2007. What is migration? Bioscience. 57, 113-121. https://doi.org/10.1641/b570206
  4. Espinosa, P.J., Contreras, J., Quinto, V., Gravalos, C., Fernandez, E., Bielza, P., 2005. Metabolic mechanisms of insecticide resistance in the western flower thrips, Frankliniella occidentalis (Pergande). Pest Manag. Sci. 61, 1009-1015. https://doi.org/10.1002/ps.1069
  5. Fatnassi, H., Pizzol, J., Senoussi, R., Biondi, A., Desneux, N., Poncet, C., Boulard, T., 2015. Within-crop air temperature and humidity outcomes on spatio-temporal distribution of the key rose pest Frankliniella occidentalis. PLoS One 10, e0126655. https://doi.org/10.1371/journal.pone.0126655
  6. Hamilton, J.G., Hall. D.R., Kirk. W.D., 2005. Identification of a male-produced aggregation pheromone in the western flower thrips Frankliniella occidentalis. J. Chem. Ecol. 31, 1369-1379. https://doi.org/10.1007/s10886-005-1351-z
  7. Isard, S.A., Gage, S.H., 2001. Flow of life in the atmosphere: an airscape approach to understanding invasive organisms. Michigan State University Press, East Lansing, MI.
  8. Johansen, N.S, Torp, T., Solhaug, K.A., 2018. Phototactic response of Frankliniella occidentalis to sticky traps with blue light emitting diodes in herb and Alstroemeria greenhoses. Crop Prot. 114, 120-128. https://doi.org/10.1016/j.cropro.2018.08.023
  9. Kim, C., 2000. Review of disease incidence of major crops in 2000. Korean J. Pestic. Sci. 5, 1-11.
  10. Kim, T.Y., Jang, C., Kang, H.W., Choi, J.H., Lee, H.W., Lee, J.W., Lee, D.H., Yang, S.K., Lee, S.Y., Min, C.G., Lee, D.W., 2021a. Comparison of pest occurrence and viral disease incidence rate with reduced the application of pesticides in red pepper field. Korean J. Pestic. Sci. 25, 1-10. https://doi.org/10.7585/kjps.2021.25.1.1
  11. Kim, C.Y., Choi, D.Y., Kang, J.H., Ahmed, S., Kil, E.J., Kwon, G.M., Lee, G.S., Kim, Y., 2021b. Thrips infesting hot pepper cultured in greenhouses and variation in gene sequences encoded in TSWV. Korean J. Appl. Entomol. 60, 387-401. https://doi.org/10.5656/KSAE.2021.11.0.037
  12. Kim, S., Kim, S.B., Kim, D.S., 2019. A preliminary study on the attractiveness of yellow sticky trap for insect pests according to the installation angle of traps in strawberry farms. Korean J. Appl. Entomol. 58, 143-149. https://doi.org/10.5656/KSAE.2019.05.0.025
  13. Kirk, W.D., Terry, L.I., 2003. The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agric. For. Entomol. 5, 301-310. https://doi.org/10.1046/j.1461-9563.2003.00192.x
  14. Kirk, W.S.J., de Kogel, W.J., Koschier, E.H., Teulon, D.A.J., 2021. Semiochemicals for thrips and their use in pest management. Annu. Rev. Entomol. 66, 101-119. https://doi.org/10.1146/annurev-ento-022020-081531
  15. KOSIS (Korean Statistical Information Service), 2020. Area of cultivation of outdoor vegetables. https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0013&vw_cd=MT_ZTITLE&list_id=K1_15&seqNo=&lang_mode=ko&language=kor&obj_var_id=&itm_id=&conn_path=MT_ZTITLE. (Accessed Sep. 28. 2021).
  16. Lee, S., Lee, J., Kim, S., Choi, H., Park, J., Lee, J., Lee, K., Moon, J., 2004. The incidence and distribution of viral diseases in pepper by cultivation types. Res. Plant Dis. 10, 231-240. https://doi.org/10.5423/RPD.2004.10.4.231
  17. Moon, H.C., Cho, I.K., Im, J.R., Goh, B.R., Kim, D.H., Hwang, C.Y., 2006. Seasonal occurrence and damage by thrips on open red pepper in Jeonbuk Province. Korean J. Appl. Entomol. 45, 9-13.
  18. Niassy, S., Tamiru, A., Hamilton, J.G.C., Kirk, W.D.J., Mumm, R., Sims, C., de Kogel, W.J., Ekesi, S., Maniania, N.K., Bandi, K., Mitchell, F., Subramanian, S., 2019. Characterization of male-produced aggregation pheromone of the bean flower thrips Megalurothrips sjostedti (Thysanoptera: Thripidae). J. Chem. Ecol. 45, 348-355. https://doi.org/10.1007/s10886-019-01054-8
  19. Oke, T.R., 1987. Boundary layer climates. Methuen, London, UK.
  20. Pappu, H.R., Jones, R.A.C, Jain, R.K., 2009. Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Res. 141, 219-236. https://doi.org/10.1016/j.virusres.2009.01.009
  21. RDA (Rural Development Administration), 2020. Pepper - agricultural technology guide 115 (revised edition), RDA, Jeonju, Korea.
  22. Reitz, S.R., Gao, Y., Kirk, W.D.J., Hoddle, M.S., Leiss, K.A., Funderburk, J.E., 2020. Invasion biology, ecology, and management of western flower thrips. Annu. Rev. Entomol. 65, 17-37. https://doi.org/10.1146/annurev-ento-011019-024947
  23. Roth, F., Galli, Z., Toth, M., Fail, J., Jenser, G., 2016. The hypothesized visual system of Thrips tabaci (Lindeman) and Frankliniella occidentalis (Pergande) based on different coloured traps' catches. North-Western J. Zool. 12, 40-49.
  24. Sampson, C., Kirk, W.D., 2013. Can mass trapping reduce thrips damage and is it economically viable? Management of the Western flower thrips in strawberry. PLoS One 8, e80787. https://doi.org/10.1371/journal.pone.0080787
  25. SAS Institute, 1989. SAS/STAT User's Guide. SAS Institute, Inc., Cary, NC.
  26. Seo, M.H., Lee, S.C., Yang, C.Y., Yoon, J.B., Park, J., 2018. Monitoring occurrence status of thrips populations on field-cultivated pepper at major cultivated region in west coast, Korea. Korean J. Environ. Biol. 36, 544-549. https://doi.org/10.11626/KJEB.2018.36.4.544
  27. Smith, E.A., Fuchs, M., Shields, E.J., Nault, B.A., 2015. Long-distance dispersal potential for onion thrips (Thysanoptera: Thripidae) and Iris yellow spot virus (Bunyavidiridae: Tospovirus) in an onion ecosystem. Environ. Entomol. 44, 921-930. https://doi.org/10.1093/ee/nvv072
  28. Takabayashi, J., Dicke, M., 1992. Response of predatory mites with different rearing histories to volatiles of uninfested plants. Entomol. Exp. Appl. 64, 187-193. https://doi.org/10.1111/j.1570-7458.1992.tb01608.x
  29. Teulon, D.A.J., Davidson, M.M., Perry, N.B., Nielsen, M.C., Castane, C., Bosch, D., Riudavets, J., van Tol, R.W.H.M., de Kogel, W.J., 2017. Methyl isonicotinate - a non-pheromone thrips semiochemical - and its potential for pest management. Int. J. Trop. Insect Sci. 37, 50-56. https://doi.org/10.1017/S1742758417000030
  30. Webster, C.G., Reitz, S.R., Perry, K.L., Adkins, S.A., 2011. Natural M RNA reassortant arising from two species of plant-and insect-infecting bunyaviruses and comparison of its sequence and biological properties to parental species. Virology 413, 216-225. https://doi.org/10.1016/j.virol.2011.02.011
  31. Zhang, B., Qian, W., Qiao, X., Xi, Y., Wan, F., 2019. Invasion biology, ecology, and management of Frankliniella occidentalis in China. Arch. Insect Biochem. Physiol. 102, e21613. https://doi.org/10.1002/arch.21613
  32. Zhao, M., Ho, H., Wu, Y., He, Y., Li, M., 2014. Western flower thrips (Frankliniella occidentalis) transmits Maize chlorotic mottle virus. J. Phytopathol. 162, 532-536. https://doi.org/10.1111/jph.12217