DOI QR코드

DOI QR Code

태독이 장내 세균총에 미치는 영향을 규명하기 위한 임신쥐의 스트레스 및 식이에 따른 신생쥐의 장내 세균총 및 IgA 농도 분석 시험

Study on Intestinal Flora and IgA Concentration Analysis in Newborn Mice by Stress and Diet in Pregnant Mice to Investigate the Effect of Taedok on the Intestinal Flora

  • 정지은 (우석대학교 한의과대학 소아과학교실) ;
  • 최유민 (우석대학교 한의과대학 침구의학교실) ;
  • 정민정 (우석대학교 한의과대학 소아과학교실)
  • Jeong, Jieun (Department of Pediatrics, College of Korean Medicine, Woosuk University) ;
  • Choi, Yoomin (Department of Acupuncture & Moxibustion, College of Korean Medicine, Woosuk University) ;
  • Jeong, Minjeong (Department of Pediatrics, College of Korean Medicine, Woosuk University)
  • 투고 : 2021.10.22
  • 심사 : 2021.11.19
  • 발행 : 2021.11.30

초록

Objectives The purpose of this study is to look for pathological mechanism of disease development caused by Taedok, by studying whether stress and diet in pregnant ICR mice affect the intestinal flora and IgA (Immunoglobulin A) concentration. Methods The mice were divided into 4 groups (n=5 per group) based on the concept of Taedok: the control group (G1), stress group (G2), capsaicin diet group (G3), high fat diet group (G4). We collected and analyzed intestinal flora from maternal feces and cecal flora from neonatal mice by group. Then, IgA concentration in the maternal feces and sIgA (secretory Immunoglobulin A) concentration in the cecal contents of newborn mice were analyzed. In addition, serum corticosterone was analyzed before and after stress application. Results Changes in maternal intestinal flora and neonatal mice cecal flora by stress and diet were observed. There were no significant changes in the IgA concentration in maternal feces and the sIgA concentration in the cecal contents of neonatal mice. No significant changes compared to the control group were observed between groups before and after applying stress. However, when comparing within one subject, a significant increase was confirmed after stress application in the stress group (G2). Conclusions Based on the results, we observed stress and diet in pregnant mice affect the intestinal flora of maternal and neonatal. We were able to interpret the pathological mechanism of Taedok based on the principle of interaction between mother and newborn intestinal flora.

키워드

과제정보

이 논문은 2017년도 정부 (미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2017R1C1B2011669).

참고문헌

  1. Kang MS, Chang GT, Kim JH. A study on fetal toxicosis removal therapy. J Pediatr Korean Med. 2003;17(1): 29-51.
  2. Kim KB, Kim DG, Kim YH, Kim JH, Min SY, Park EJ, Baek JH, Sun HK, Yu SA, Lee SY, Lee JY, Chang GT, Jeong MJ, Chai JW, Cheon JH, Han YJ, Han JK. Hanbangsoacheongsonyeonuihak (sang). 2nd ed. Seoul: Eui Sung Dang Publishing Co. 2015:210-2.
  3. Jo JJ. Gupyubang. 1st ed. Seoul: Yeokang Publishing Co. 1993:44.
  4. Walker WA. Mechanisms of action of probiotics. Clin Infect Dis. 2008;46(2):S87-91. https://doi.org/10.1086/523335
  5. Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O'Sullivan O, Fitzgerald GF, Deane J, O'Connor M, Harnedy N, O'Connor K, O'Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O'Toole PW. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488(7410): 178-84. https://doi.org/10.1038/nature11319
  6. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29): 8787-803. https://doi.org/10.3748/wjg.v21.i29.8787
  7. Kalliomaki M, Isolauri E. Role of intestinal flora in the development of allergy. Curr Opin Allergy Clin Immunol. 2003;3(1):15-20. https://doi.org/10.1097/00130832-200302000-00003
  8. Tanaka M, Nakayama J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol Int. 2017;66(4):515-22. https://doi.org/10.1016/j.alit.2017.07.010
  9. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA. 2011;108(1):4578-85. https://doi.org/10.1073/pnas.1000081107
  10. Simon GL, Gorbach SL. The human intestinal microflora. Dig Dis Sci. 1986;31(9):147-62. https://doi.org/10.1007/BF01295996
  11. Rook GAW, Brunet LR. Microbes, immunoregulation, and the gut. Gut. 2005;54(3):317-20. https://doi.org/10.1136/gut.2004.053785
  12. Karlsson H, Hessle C, Rudin A. Innate immune responses of human neonatal cells to bacteria from the normal gastrointestinal flora. Infect Immun. 2002;70(12): 6688-96. https://doi.org/10.1128/IAI.70.12.6688-6696.2002
  13. Watanabe S, Narisawa Y, Arase S, Okamatsu H, Ikenaga T, Tajiri Y, Kumemura M. Differences in fecal microflora between patients with atopic dermatitis and healthy control subjects. J Allergy Clin Immunol. 2003;111(3): 587-91. https://doi.org/10.1067/mai.2003.105
  14. Bjorksten B, Sepp E, Julge K, Voor T, Mikelsaar M. Allergy development and the intestinal microflora during the first year of life. J Allergy Clin Immunol 2001;108(4): 516-20. https://doi.org/10.1067/mai.2001.118130
  15. Kalliomaki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol. 2001;107(1):129-34. https://doi.org/10.1067/mai.2001.111237
  16. Penders J, Thijs C, van den Brandt PA, Kummeling I, Snijders B, Stelma F, Adams H, van Ree R, Stobberingh EE. Gut microbiota composition and development of atopic manifestations in infancy: the koala birth cohort study. Gut. 2007;56(5):661-8. https://doi.org/10.1136/gut.2006.100164
  17. Ismail IH, Oppedisano F, Joseph SJ, Boyle RJ, Licciardi PV, Robins-Browne RM, Tang MLK. Reduced gut microbial diversity in early life is associated with later development of eczema but not atopy in high-risk infants. Pediatr Allergy Immunol 2012;23(7):674-81. https://doi.org/10.1111/j.1399-3038.2012.01328.x
  18. Abrahamsson TR, Jakobsson HE, Andersson AF, Bjorksten B, Engstrand L, Jenmalm MC. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol. 2012;129(2):434-40. https://doi.org/10.1016/j.jaci.2011.10.025
  19. Kim MH, Suh DI, Lee SY, Kim YK, Cho YJ, Cho SH. Microbiome research in food allergy and atopic dermatitis. Allergy Asthma Respir Dis. 2016;4(6): 389-98. https://doi.org/10.4168/aard.2016.4.6.389
  20. Mueller NT, Whyatt R, Hoepner L, Oberfield S, Dominguez-Bello MG, Widen EM, Hassoun A, Perera F, Rundle A. Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity. Int J Obes. 2015;39(4):665-70. https://doi.org/10.1038/ijo.2014.180
  21. Cardwell CR, Stene LC, Joner G, Cinek O, Svensson J, Goldacre MJ, Parslow RC, Pozzilli P, Brigis G, Stoyanov D, Urbonaite B, Sipetic S, Schober E, Ionescu-Tirgoviste C, Devoti G, de Beaufort CE, Buschard K, Patterson CC. Caesarean section is associated with an increased risk of childhood-onset type 1 diabetes mellitus: a meta-analysis of observational studies. Diabetologia. 2008;51(5):726-35. https://doi.org/10.1007/s00125-008-0941-z
  22. Waters JL, Ley RE.. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 2019;17(1):83. https://doi.org/10.1186/s12915-019-0699-4
  23. Fu J, Bonder MJ, Cenit MC, Tigchelaar EF, Maatman A, Dekens JAM, Brandsma E, Marczynska J, Imhann F, Weersma RK, Franke L, Poon TW, Xavier RJ, Gevers D, Hofker MH, Wijmenga C, Zhernakova A, The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ Res. 2015;117(9):817-24. https://doi.org/10.1161/CIRCRESAHA.115.306807
  24. Lim MY, You HJ, Yoon HS, Kwon B, Lee JY, Lee S, Song YM, Lee K, Sung J, Ko GP. The effect of heritability and host genetics on the gut microbiota and metabolic syndrome. Gut. 2017;66(6):1031-8. https://doi.org/10.1136/gutjnl-2015-311326
  25. Hibberd AA, Yde CC, Ziegle ML, Honore AH, Saarinen MT, Lahtinen S, Stahl B, Jensen HM, Stenman LK. Probiotic or synbiotic alters the gut microbiota and metabolism in a randomised controlled trial of weight management in overweight adults. Benef Microbes. 2019;10(2):121-35. https://doi.org/10.3920/bm2018.0028
  26. He Y, Wu W, Wu S, Zheng HM, Li P, Sheng HF, Chen MX, Chen ZH, Ji GY, Zheng ZDX, Mujagond P, Chen XJ, Rong ZH, Chen P, Lyu LY, Wang X, Xu JB, Wu CB, Yu N, Xu YJ, Yin J, Raes J, Ma WJ, Zhou HW. Linking gut microbiota, metabolic syndrome and economic status based on a population-level analysis. Microbiome. 2018;6(1):172. https://doi.org/10.1186/s40168-018-0557-6
  27. Lopez-Contreras BE, Moran-Ramos S, Villarruel-Vazquez R, Macias-Kauffer L, Villamil-Ramirez H, Leon-Mimila P, Vega-Badillo J, Sanchez-Munoz F, Llanos-Moreno LD, Canizalez-Roman A, Del Rio-Navarro B, Ibarra-Gonzalez I, Vela-Amieva M, Villarreal-Molina T, Ochoa-Leyva A, Aguilar-Salinas CA, Canizales-Quinteros S. Composition of gut microbiota in obese and normal-weight Mexican school-age children and its association with metabolic traits. Pediatr Obes. 2018;13(6):381-8. https://doi.org/10.1111/ijpo.12262
  28. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT, Spector TD, Clark AG, Ley RE. Human genetics shape the gut microbiome. Cell. 2014;159(4): 789-99. https://doi.org/10.1016/j.cell.2014.09.053
  29. Jalanka-Tuovinen J, Salojarvi J, Salonen A, Immonen O, Garsed K, Kelly FM, Zaitoun A, Palva A, Spiller RC, de Vos WM. Faecal microbiota composition and host-microbe cross-talk following gastroenteritis and in postinfectious irritable bowel syndrome. Gut. 2014;63 (11):1737-45. https://doi.org/10.1136/gutjnl-2013-305994
  30. Palma GD, Lynch MDJ, Lu J, Dang VT, Deng Y, Jury J, Umeh G, Miranda PM, Pastor MP, Sidani S, Pinto-Sanchez MI, Philip V, McLean PG, Hagelsieb MG, Surette MG, Bergonzelli GE, Verdu EF, Britz-McKibbin P, Neufeld JD, Collins SM, Bercik P. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci Transl Med. 2017;9(379):6397.
  31. Pozuelo M, Panda S, Santiago A, Mendez S, Accarino A, Santos J, Guarner F, Azpiroz F, Manichanh C. Reduction of butyrate- and methane-producing microorganisms in patients with irritable bowel syndrome. Sci Rep. 2015;5(1):12693. https://doi.org/10.1038/srep12693
  32. Hollister EB, Cain KC, Shulman RJ, Jarrett ME, Burr RL, Ko C, Zia J, Han CJ, Heitkemper MM. Relationships of microbiome markers with extraintestinal, psychological distress and gastrointestinal symptoms, and quality of life in women with irritable bowel syndrome. J Clin Gastroenterol. 2020;54(2):175-83. https://doi.org/10.1097/mcg.0000000000001107
  33. Jeffery IB, O'Toole PW, Ohman L, Claesson MJ, Deane J, Quigley EMM, Simren M. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut. 2012;61(7):997-1006. https://doi.org/10.1136/gutjnl-2011-301501
  34. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104(34):13780-5. https://doi.org/10.1073/pnas.0706625104
  35. Walker AW, Sanderson JD, Churcher C, Parkes GC, Hudspith BN, Rayment N, Brostoff J, Parkhill J, Dougan G, Petrovska L. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 2011;11(1):7. https://doi.org/10.1186/1471-2180-11-7
  36. Ha S. Oh D, Lee S, Park J, Ahn J, Choi S, Cheon KA. Altered gut microbiota in korean children with autism spectrum disorders. Nutrients. 2021;13(10):3300. https://doi.org/10.3390/nu13103300
  37. Tamana SK, Tun HM, Konya T, Chari RS, Field CJ, Guttman DS, Becker AB, Moraes TJ, Turvey SE, Subbarao P, Sears MR, Pei J, Scott JA, Mandhane PJ, Kozyrskyj AL. Bacteroides-dominant gut microbiome of late infancy is associated with enhanced neurodevelopment. Gut Microbes. 2021;13(1):e1930875.
  38. Daniel H, Gholami AM, Berry D, Desmarchelier C, Hahne H, Loh G, Mondot S, Lepage P, Rothballer M, Walker A, Bohm C, Wenning M, Wagner M, Blaut M, Schmitt-Kopplin P, Kuster B, Haller D, Clavel T. High-fat diet alters gut microbiota physiology in mice. ISME J. 2014;8(2):295-308. https://doi.org/10.1038/ismej.2013.155
  39. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55-60. https://doi.org/10.1038/nature11450
  40. Luo XM, Edwards MR, Mu Q, Yu Y, Vieson MD, Reilly CM, Ahmed SA, Bankole AA, McBain AJ. Gut microbiota in human systemic lupus erythematosus and a mouse model of lupus. Appl Environ Microbiol. 2018;84(4):e2288-17.
  41. Johnson BM, Gaudreau MC, Al-Gadban MM, Gudi R, Vasu C. 2015. Impact of dietary deviation on disease progression and gut microbiome com- position in lupus-prone SNF1 mice. Clin Exp Immunol. 2015;181(2):323-37. https://doi.org/10.1111/cei.12609
  42. Wang Y, Ouyang M, Gao X, Wang S, Fu C, Zeng J, He X. Phocea, Pseudoflavonifractor and Lactobacillus intestinalis: Three Potential Biomarkers of Gut Microbiota That Affect Progression and Complications of Obesity-Induced Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes Targ Ther. 2020;13:835-50. https://doi.org/10.2147/DMSO.S240728
  43. Saulnier DM, Riehle K, Mistretta TA, Diaz MA, Mandal D, Raza S, Weidler EM, Qin X, Coarfa C, Milosavljevic A, Petrosino JF, Highlander S, Gibbs R, Lynch SV, Shulman RJ, Versalovic J. Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology. 2011;141(5):1782-91. https://doi.org/10.1053/j.gastro.2011.06.072
  44. Luck H, Khan S, Kim JH, Copeland JK, Revelo XS, Tsai S, Chakraborty M, Cheng K, Chan YT, Nohr MK, Clemente-Casares X, Perry MC, Ghazarian M, Lei H, Lin YH, Coburn B, Okrainec A, Jackson T, Poutanen S, Gaisano H, Allard JP, Guttman DS, Conner ME, Winer S, Winer DA. Gut-associated IgA+ immune cells regulate obesity-related insulin resistance. Nat Commun. 2019;10(1);1-17. https://doi.org/10.1038/s41467-018-07882-8
  45. Hong CE. Textbook of pediatrics, 12th ed. Seoul: Miraen. 2020:221-2.
  46. Montano MM, Wang MH, Even MD, vom Saal FS. Serum corticosterone in fetal mice: sex differences, circadian changes, and effect of maternal stress. Physiol Behav. 1991;50(2):323-9. https://doi.org/10.1016/0031-9384(91)90073-W