DOI QR코드

DOI QR Code

Cyclic behavior of FRP - crumb rubber concrete - steel double skin tubular columns and beams

  • Li, Danda (University of South Australia, UniSA STEM) ;
  • Hassanli, Reza (University of South Australia, UniSA STEM) ;
  • Su, Yue (University of South Australia, UniSA STEM) ;
  • Zhuge, Yan (University of South Australia, UniSA STEM) ;
  • Ma, Xing (University of South Australia, UniSA STEM)
  • 투고 : 2020.08.16
  • 심사 : 2021.11.10
  • 발행 : 2021.12.10

초록

This paper presents experimental and analytical studies to understand the behavior of crumb rubber concrete (CRC)-filled fiber reinforced polymer (FRP) and steel tube double skin column (DSC) and beam (DSB) members under cyclic loading. The main test variable was the percentage of rubber which ranged from 0 to 40%. For column members, different heights corresponding to different aspect ratios were examined to understand the to understand the effect of DSCs' slenderness on the cyclic response of the columns. the. The behavior of the specimens in terms of failure mode, strain development, energy dissipation, load-displacement response were presented and compared. The ability of the current provisions of the Australian codes to predict the capacity of such double skin members was also evaluated based on the test results. This study concluded that the reduction in the concrete strength was more severe at the material level compared to structural level. Also, as the load changed from axial compression in columns to pure moment in beams the negative effect of rubber percentage on the strength became less significant.

키워드

과제정보

The authors would like to acknowledge the contribution from the UniSA honors students involved in this research project, namely: Yachong Xu, Biyan Dong and Cendi Zhu. The authors would like to acknowledge the donation of the following materials: sand by ResourceCo Pty. Ltd., cement by Adelaide Brighton Cement Pty. Ltd., rubber aggregate by Tyrecycle Pty. Ltd.

참고문헌

  1. Abendeh, R., Ahmad, H. and Hunaiti, Y.M. (2016), "Experimental studies on the behavior of concrete-filled steel tubes incorporating crumb rubber", J. Constr. Steel Res., 122, 251-260. https://doi.org/ 10.1016/j.jcsr.2016.03.022.
  2. AS1012.2, Standards Australia (1994), 'Methods for Testing Concrete, Preparation of Concrete Mixes in the Laboratory', Sydney, Standards association of Australia.
  3. AS 1012.8, Standards Australia (2000), 'Methods for Making and Curing Concrete- Compression and Indirect Tensile Test specimens', Sydney, Standards association of Australia.
  4. AS 1012.9, Standards Australia (1999), 'Methods of testing concrete - Determination of compressive strength of concrete specimens', AS 1012.9, Sydney, Standards Association of Australia.
  5. AS 4100, Standards Australia (1998), "Steel Structures", Sydney, Standards association of Australia.
  6. AS/NZS 2327, Standards Australia (2017), "Composite Structures", Sydney, Standards association of Australia.
  7. Chan, C.W., Yu, T., Zhang, S.S. and Xu, Q.F. (2019), "Compressive behavior of FRP-confined rubber concrete", Constr. Build. Mater., 211, 416-426. https://doi.org/10.1016/j.conbuildmat.2019.03.211.
  8. Chu, L., Li, D., Ma, X. and Zhao, J. (2018), "Cyclic behavior of concrete encased steel (CES) column-steel beam joints with concrete slabs", Steel Compos. Struct., 29(6), 739-748. https://doi.org/10.12989/scs.2018.29.6.735.
  9. Duarte, A.P.C., Silvestre, N., Brito, J., Julio, E. and Silvestre, J.D. (2018), "On the sustainability of rubberized concrete filled square steel tubular columns", J. Cleaner Production, 170, 510-521. https://doi.org/10.1016/j.jclepro.2017.09.131.
  10. Elchalakani, M., Hassanein, M.F., Karrech, A. and Yang, B. (2018), "Experimental investigation of rubberised concrete-filled double skin square tubular columns under axial compression", Eng. Struct., 171, 730-746. https://doi.org/10.1016/j.engstruct.2018.05.123
  11. Eltayeb, E., Ma, X., Zhuge, Y., Youssf, O. and Mills, J.E. (2020a), "Influence of rubber particles on the properties of foam concrete", J. Build. Eng., 30, article no. 101217, 1-13, https://doi.org/10.1016/j.jobe.2020.101217.
  12. Eltayeb, E., Ma, X., Zhuge, Y., Youssf, O., Mills, J.E., Xiao, J. and Singh, A. (2020b), "Structural performance of composite panels made of profiled steel skins and foam rubberised concrete under axial compressive loads", Eng. Struct., 211, article no. 110448, 1-21, https://doi.org/10.1016/j.engstruct.2020.110448.
  13. Eltayeb, E., Ma, X., Zhuge, Y., Youssf, O., Mills, J.E. and Xiao, J. (2020c), "Structural behavior of composite panels made of profiled steel sheets and foam rubberised concrete under monotonic and cyclic shearing loads", Thin Wall. Struct., 151, article no. 106726, 1-15, https://doi.org/10.1016/j.tws.2020.106726.
  14. Eltayeb, E., Ma, X., Zhuge, Y., Xiao, J. and Youssf, O. (2021), "Dynamic performance of rubberised concrete and its structural applications: an overview", Eng. Struct., 234, article no. 111990, 1-20. https://doi.org/ 10.1016/j.engstruct.2021.111990.
  15. Fanggi, B. and Ozbakkaloglu, T. (2015), 'Square FRP-HSC-steel composite columns: Behavior under axial compression", Eng. Struct., 92, 156-171. https://doi.org/10.1016/j.engstruct.2015.03.005.
  16. Ghannam, S., Jawad, Y. and Hunait, Y. (2004), "Failure of lightweight aggregate concrete-filled steel tubular columns", Steel Compos. Struct., 4(1), 1-8. https://doi.org/10.12989/scs.2004.4.1.001.
  17. Gholampour, A., Ozbakkaloglu, T. and Hassanli, R. (2017), "Behavior of rubberized concrete under active confinement", Constr. Build. Mater., 138, 372-382, https://doi.org/10.1016/j.conbuildmat.2017.01.105.
  18. Gholampour, A., Pour; A., Hassanli, R. and Ozbakkaloglu, T. (2019), "Behavior of actively confined rubberized concrete under cyclic axial compression", J. Struct. Eng., 145(11), https://doi.org/10.1061/(ASCE)ST.1943-541X.0002434.
  19. Gravina, R., Xie, T., Roychand, R., Zhuge, Y., Ma, X., Mills, J.E. and Youssf, O (2021), "Bond behavior between crumb rubberized concrete and deformed steel bars", Structures, 34, 2115-2133. https://doi.org/10.1016/j.istruc.2021.08.076.
  20. Hassan, M., Mahmoud, A. and Serror, M. (2016), "Behavior of concrete-filled double skin steel tube beam-columns", Steel Compos. Struct., 22(5), 1141-1162. https://doi.org/10.12989/scs.2016.22.5.1141.
  21. Hassanli, R., Youssf, O. and Mills, JE. (2017a), "Experimental investigations of reinforced rubberized concrete structural members", J. Build. Eng., 10, 149-165. https://doi.org/10.1016/j.jobe.2017.03.006.
  22. Hassanli, R., Youssf, O. and Mills, J.E. (2017b), "Seismic performance of precast posttensioned segmental FRP-confined and unconfined crumb rubber concrete columns", J. Compos. Constr., 21(4), https://doi.org/10.1061/(ASCE)CC.1943-5614.0000789.
  23. Idris, Y. and Ozbakkaloglu, T. (2015), "Flexural behavior of FRPHSC-steel double skin tubular beams under reversed-cyclic loading", Thin-Wall. Struct., 87, 89-101. https://doi.org/10.1016/j.tws.2014.11.003.
  24. Kim, J., Kwak, H. and Kwak, J. (2013), "Behavior of hybrid double skin concrete filled circular steel tube columns", Steel Compos. Struct., 14(2), 191-204. https://doi.org/10.12989/scs.2013.14.2.191.
  25. Li, D., Mills, J.E., Benn, T., Ma, X., Gravina, R. and Zhuge, Y. (2016), "Review of the performance of high-strength rubberized concrete and its potential structural applications", Adv. Civil Eng. Mater., 5(1), 149-166. https://doi.org/10.1520/ACEM20150026.
  26. Li, D., Zhuge, Y., Gravina, R. and Mills, J.E. (2018), "Compressive stress strain behavior of crumb rubber concrete (CRC) and application in reinforced CRC slab", Constr. Build. Mater., 166, 745-759. https://doi.org/10.1016/j.conbuildmat.2018.01.142.
  27. Li, D., Zhuge, Y., Gravina, R., Benn, T. and Mills, J.E. (2020a), "Creep and drying shrinkage behavior of crumb rubber concrete (CRC)", Aus. J. Civil Eng., 18(2). 187-204. https://doi.org/10.1080/14488353.2020.1761510.
  28. Li, D., Gravina, R., Zhuge, Y. and Mills, J.E. (2020b), "Bond behavior of steel-reinforcing bars in Crumb Rubber Concrete (CRC)", Aus. J. Civil Eng., 18(1), 2-17. https://doi.org/10.1080/14488353.2019.1680073.
  29. Li, D., Xiao, J., Zhuge, Y., Mills, J.E., Senko, H. and Ma, X. (2020c), "Experimental study on crumb rubberised concrete (CRC) and reinforced CRC slabs under static and impact loads", Aus. J. Struct. Eng., 21(4), 294-306. https://doi.org/10.1080/13287982.2020.1809811.
  30. Mendis, A.S.M., Al-Deen, S. and Ashraf, M. (2017), "Effect of rubber particles on the flexural behavior of reinforced crumbed rubber concrete beams", Constr. Build. Mater., 154, 644-657. https://doi.org/ 10.1016/j.conbuildmat.2017.07.220.
  31. Ozbakkaloglu, T., Fanggi, B. and Zheng, J. (2016), "Confinement model for concrete in circular and square FRP-concrete-steel double-skin composite columns", Mater. Design, 96, 458-469. https://doi.org/10.1016/j.matdes.2016.02.027.
  32. Peng, K., Yu, T., Hadi, M.N.S. and Huang, L. (2018), "Compressive behavior of hybrid double-skin tubular columns with a rib stiffened steel inner tube", Compos. Struct., 204, 634-644. https://doi.org/10.1016/j.compstruct.2018.07.083.
  33. Pham, T., Zhang, M.X., Elchalakani, M., Karrech, A., Hao, H. and Ryan, A. (2018), "Dynamic response of rubberized concrete columns with and without FRP confinement subjected to lateral impact", Constr. Build. Mater., 186, 207-218. https://doi.org/10.1016/j.conbuildmat.2018.07.146.
  34. Ren, F., Chen, J., Chen, G., Guo, Y. and Jiang, T. (2018), "Seismic behavior of composite shear walls incorporating concrete-filled steel and FRP tubes as boundary elements", Eng. Struct., 168, 405-419. https://doi.org/10.1016/j.engstruct.2018.04.032.
  35. Shakir-Khalil, H. (1991), "Composite columns of double-skinned shells", J. Constr. Steel Res., 19, 133-152. https://doi.org/10.1016/0143-974X(91)90038-3.
  36. Tao, Z., Han, L.H., Zhao, X.L. (2004), "Behavior of concrete-filled double skin (CHS inner and CHS outer) steel tubular stub columns and beam-columns", J. Constr. Steel Res., 60(8), 1129-58. https://doi.org/10.1016/j.jcsr.2003.11.008.
  37. Teng, J.G., Yu, T. and Wong, Y.L. (2004), "Behavior of hybrid FRPconcrete-steel double-skin tubular columns", Proceedings of the 2nd Int. Conf. on FRP Composites in Civil Engineering-CICE 2004, A. A. Balkema, Leiden, Netherlands.
  38. Teng, J.G., Yu, T. and Wong, Y.L. (2007), "Hybrid FRP-concrete-steel tubular columns: concept and behavior", Constr. Build. Mater., 21(4), 846-854. https://doi.org/10.1016/j.conbuildmat.2006.06.017.
  39. Vernardos, S. and Gantes, C (2019), "Experimental behavior of concrete-filled double-skin steel tubular (CFDST) stub members under axial compression: A comparative review", Structures, 22, 383-404. https://doi.org/ doi.org/10.1016/j.istruc.2019.06.025.
  40. Wang, R., Han, L. and Tao, Z. (2015), "Behavior of FRP-concrete-steel double skin tubular members under lateral impact: Experimental study", Thin-Wall. Struct., 95, 363-373. https://doi.org/10.1016/j.tws.2015.06.022.
  41. Wang, W., Wu, C. and Liu, Z. (2019), "Compressive behavior of hybrid double-skin tubular columns with ultra high performance fiber-reinforced concrete (UHPFRC)", Eng. Struct., 180, 419-441. https://doi.org/10.1016/j.engstruct.2018.11.048.
  42. Wei, S., Mau, S.T., Vipulanandan, C. and Mantrala, S.K. (1995), "Performance of new sandwich tube under axial loading: experiment", J. Struct. Eng., 121(12), 1806-1814. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:12(1806).
  43. Wong, Y.L., Yu, T., Teng, J.G. and Dong, S.L. (2008), "Behavior of FRP-confined concrete in annular section columns", Compos. Part B: Eng., 39, 451-466. https://doi.org/10.1016/j.compositesb.2007.04.001.
  44. Xiong, Z., Deng, J., Liu, F., Li, L. and Feng, W. (2018), "Experimental investigation on the behavior of GFRP-RAC-steel double-skin tubular columns under axial compression", Thin-Wall. Struct., 132, 350-361, https://doi.org/10.1016/j.tws.2018.08.026.
  45. Yi, O., Mills, J.E., Zhuge, Y., Ma, X., Gravina, R. and Youssf, O. (2020), "Case study of the structural performance of composite slabs with low strength CRC delivered by concrete truck", Case Studies Constr. Mater., 13, article no. e00453, 1-18, https://doi.org/10.1016/j.cscm.2020.e00453.
  46. Yi, O., Zhuge, Y., Ma, X., Gravina, R., Mills, J.E. and Youssf, O. (2021), "Push-off and pull-out bond behavior of CRC composite slabs - an experimental investigation", Eng. Struct., 228, article no. 111480, 1-19. https://doi.org/10.1016/j.engstruct.2020.111480
  47. Youssf, O., ElGawady, M.A. and Mills, J.E. (2015), "Experimental investigation of crumb rubber concrete columns under seismic loading", Structures, 3, 13-27. https://doi.org/10.1016/j.istruc.2015.02.005
  48. Youssf, O., Hassanli, R. and Mills, J.E. (2017), "Mechanical performance of FRP-confined and unconfined crumb rubber concrete containing high rubber content", J. Build. Eng., 11, 115-126. https://doi.org/10.1016/j.jobe.2017.04.011.
  49. Youssf, O., Mills, J.E., Benn, T., Zhuge, Y., Ma, X., Roychand, R. and Gravina, R. (2020), "Development of crumb rubber concrete for practical application in the residential construction sector - design and processing", Constr. Build. Mater., 260, article no. 119813, 1-12, https://doi.org/10.1016/j.conbuildmat.2020.119813.
  50. Yu, T. and Teng, J.G. (2013), "Behavior of hybrid FRP-concrete-steel double-skin tubular columns with a square outer tube and a circular inner tube subjected to axial compression", J. Compos. Constr., 17(2), 271-279. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000331.
  51. Yu, T., Wong, Y. L., Teng, J.G., Dong S.L. and Lam, E.S.S. (2006), "Flexural behavior of hybrid FRP-concrete-steel double-skin tubular members", J. Compos. Constr., 10(5), 443-452. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:5(443).
  52. Yu, T., Zhang, B., Cao, Y.B. and Teng, J.G. (2012), "Behavior of hybrid FRP-concrete-steel double-skin tubular columns subjected to cyclic axial compression", Thin-Wall. Struct., 61, 196-203. https://doi.org/10.1016/j.tws.2012.06.003.
  53. Yu, T., Zhang, S., Huang, L. and Chan, C. (2017), "Compressive behavior of hybrid double-skin tubular columns with a large rupture strain FRP tube", Compos. Struct., 171, 10-18. https://doi.org/10.1016/j.compstruct.2017.03.013.
  54. Zeng, L., Li, L., Chen, L. and Liu, F. (2019), "Study of compressive behavior of FRP-recycled aggregate concrete-steel stub columns", Mag. Concrete Res,, 71(15), 794-808. https://doi.org/10.1680/jmacr.17.00560.
  55. Zhao, X.L., Grzebieta, R. and Elchalakani, M. (2002), "Tests of concrete-filled double skin CHS composite stub columns", Steel Compos. Struct., 2(2), 129-146. https://doi.org/10.12989/scs.2002.2.2.129.
  56. Zhang, B., Teng, J.G. and Yu, T. (2015), "Experimental behavior of hybrid FRP-concrete-steel double-skin tubular columns under combined axial compression and cyclic lateral loading", Eng. Struct., 99, 214-231. https://doi.org/10.1016/j.engstruct.2015.05.002.
  57. Zhang, B., Teng, J.G. and Yu, T. (2017), "Compressive behavior of double-skin tubular columns with high-strength concrete and a filament-wound FRP tube", J. Compos. Constr., 21(5). Article Number: 04017029. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000800.
  58. Zheng, J. and Ozbakkaloglu, T. (2017), "Sustainable FRP-recycled aggregate concrete-steel composite columns:Behavior of circular and square columns under axial compression", Thin-Wall. Struct., 120, 60-69. https://doi.org/10.1016/j.tws.2017.08.011.
  59. Zhou, Y., Liu, X., Xing, F., Li, D., Wang, Y. and Sui, L. (2017), "Behavior and modeling of FRP-concrete-steel double-skin tubular columns made of full lightweight aggregate concrete", Constr. Build. Mater., 139, 52-63. https://doi.org/10.1016/j.conbuildmat.2016.12.154