Browse > Article
http://dx.doi.org/10.12989/scs.2021.41.5.649

Cyclic behavior of FRP - crumb rubber concrete - steel double skin tubular columns and beams  

Li, Danda (University of South Australia, UniSA STEM)
Hassanli, Reza (University of South Australia, UniSA STEM)
Su, Yue (University of South Australia, UniSA STEM)
Zhuge, Yan (University of South Australia, UniSA STEM)
Ma, Xing (University of South Australia, UniSA STEM)
Publication Information
Steel and Composite Structures / v.41, no.5, 2021 , pp. 649-661 More about this Journal
Abstract
This paper presents experimental and analytical studies to understand the behavior of crumb rubber concrete (CRC)-filled fiber reinforced polymer (FRP) and steel tube double skin column (DSC) and beam (DSB) members under cyclic loading. The main test variable was the percentage of rubber which ranged from 0 to 40%. For column members, different heights corresponding to different aspect ratios were examined to understand the to understand the effect of DSCs' slenderness on the cyclic response of the columns. the. The behavior of the specimens in terms of failure mode, strain development, energy dissipation, load-displacement response were presented and compared. The ability of the current provisions of the Australian codes to predict the capacity of such double skin members was also evaluated based on the test results. This study concluded that the reduction in the concrete strength was more severe at the material level compared to structural level. Also, as the load changed from axial compression in columns to pure moment in beams the negative effect of rubber percentage on the strength became less significant.
Keywords
crumb rubber concrete; cyclic compressive loading; double skin columns; flexural behavior; fibre reinforced polymer (FRP); Steel tube;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Teng, J.G., Yu, T. and Wong, Y.L. (2007), "Hybrid FRP-concrete-steel tubular columns: concept and behavior", Constr. Build. Mater., 21(4), 846-854. https://doi.org/10.1016/j.conbuildmat.2006.06.017.   DOI
2 Abendeh, R., Ahmad, H. and Hunaiti, Y.M. (2016), "Experimental studies on the behavior of concrete-filled steel tubes incorporating crumb rubber", J. Constr. Steel Res., 122, 251-260. https://doi.org/ 10.1016/j.jcsr.2016.03.022.   DOI
3 AS1012.2, Standards Australia (1994), 'Methods for Testing Concrete, Preparation of Concrete Mixes in the Laboratory', Sydney, Standards association of Australia.
4 AS 1012.8, Standards Australia (2000), 'Methods for Making and Curing Concrete- Compression and Indirect Tensile Test specimens', Sydney, Standards association of Australia.
5 AS 1012.9, Standards Australia (1999), 'Methods of testing concrete - Determination of compressive strength of concrete specimens', AS 1012.9, Sydney, Standards Association of Australia.
6 AS 4100, Standards Australia (1998), "Steel Structures", Sydney, Standards association of Australia.
7 AS/NZS 2327, Standards Australia (2017), "Composite Structures", Sydney, Standards association of Australia.
8 Pham, T., Zhang, M.X., Elchalakani, M., Karrech, A., Hao, H. and Ryan, A. (2018), "Dynamic response of rubberized concrete columns with and without FRP confinement subjected to lateral impact", Constr. Build. Mater., 186, 207-218. https://doi.org/10.1016/j.conbuildmat.2018.07.146.   DOI
9 Tao, Z., Han, L.H., Zhao, X.L. (2004), "Behavior of concrete-filled double skin (CHS inner and CHS outer) steel tubular stub columns and beam-columns", J. Constr. Steel Res., 60(8), 1129-58. https://doi.org/10.1016/j.jcsr.2003.11.008.   DOI
10 Teng, J.G., Yu, T. and Wong, Y.L. (2004), "Behavior of hybrid FRPconcrete-steel double-skin tubular columns", Proceedings of the 2nd Int. Conf. on FRP Composites in Civil Engineering-CICE 2004, A. A. Balkema, Leiden, Netherlands.
11 Vernardos, S. and Gantes, C (2019), "Experimental behavior of concrete-filled double-skin steel tubular (CFDST) stub members under axial compression: A comparative review", Structures, 22, 383-404. https://doi.org/ doi.org/10.1016/j.istruc.2019.06.025.   DOI
12 Wang, R., Han, L. and Tao, Z. (2015), "Behavior of FRP-concrete-steel double skin tubular members under lateral impact: Experimental study", Thin-Wall. Struct., 95, 363-373. https://doi.org/10.1016/j.tws.2015.06.022.   DOI
13 Eltayeb, E., Ma, X., Zhuge, Y., Xiao, J. and Youssf, O. (2021), "Dynamic performance of rubberised concrete and its structural applications: an overview", Eng. Struct., 234, article no. 111990, 1-20. https://doi.org/ 10.1016/j.engstruct.2021.111990.   DOI
14 Chu, L., Li, D., Ma, X. and Zhao, J. (2018), "Cyclic behavior of concrete encased steel (CES) column-steel beam joints with concrete slabs", Steel Compos. Struct., 29(6), 739-748. https://doi.org/10.12989/scs.2018.29.6.735.   DOI
15 Duarte, A.P.C., Silvestre, N., Brito, J., Julio, E. and Silvestre, J.D. (2018), "On the sustainability of rubberized concrete filled square steel tubular columns", J. Cleaner Production, 170, 510-521. https://doi.org/10.1016/j.jclepro.2017.09.131.   DOI
16 Eltayeb, E., Ma, X., Zhuge, Y., Youssf, O. and Mills, J.E. (2020a), "Influence of rubber particles on the properties of foam concrete", J. Build. Eng., 30, article no. 101217, 1-13, https://doi.org/10.1016/j.jobe.2020.101217.   DOI
17 Elchalakani, M., Hassanein, M.F., Karrech, A. and Yang, B. (2018), "Experimental investigation of rubberised concrete-filled double skin square tubular columns under axial compression", Eng. Struct., 171, 730-746. https://doi.org/10.1016/j.engstruct.2018.05.123   DOI
18 Eltayeb, E., Ma, X., Zhuge, Y., Youssf, O., Mills, J.E. and Xiao, J. (2020c), "Structural behavior of composite panels made of profiled steel sheets and foam rubberised concrete under monotonic and cyclic shearing loads", Thin Wall. Struct., 151, article no. 106726, 1-15, https://doi.org/10.1016/j.tws.2020.106726.   DOI
19 Gholampour, A., Pour; A., Hassanli, R. and Ozbakkaloglu, T. (2019), "Behavior of actively confined rubberized concrete under cyclic axial compression", J. Struct. Eng., 145(11), https://doi.org/10.1061/(ASCE)ST.1943-541X.0002434.   DOI
20 Ghannam, S., Jawad, Y. and Hunait, Y. (2004), "Failure of lightweight aggregate concrete-filled steel tubular columns", Steel Compos. Struct., 4(1), 1-8. https://doi.org/10.12989/scs.2004.4.1.001.   DOI
21 Gravina, R., Xie, T., Roychand, R., Zhuge, Y., Ma, X., Mills, J.E. and Youssf, O (2021), "Bond behavior between crumb rubberized concrete and deformed steel bars", Structures, 34, 2115-2133. https://doi.org/10.1016/j.istruc.2021.08.076.   DOI
22 Hassan, M., Mahmoud, A. and Serror, M. (2016), "Behavior of concrete-filled double skin steel tube beam-columns", Steel Compos. Struct., 22(5), 1141-1162. https://doi.org/10.12989/scs.2016.22.5.1141.   DOI
23 Li, D., Zhuge, Y., Gravina, R. and Mills, J.E. (2018), "Compressive stress strain behavior of crumb rubber concrete (CRC) and application in reinforced CRC slab", Constr. Build. Mater., 166, 745-759. https://doi.org/10.1016/j.conbuildmat.2018.01.142.   DOI
24 Li, D., Xiao, J., Zhuge, Y., Mills, J.E., Senko, H. and Ma, X. (2020c), "Experimental study on crumb rubberised concrete (CRC) and reinforced CRC slabs under static and impact loads", Aus. J. Struct. Eng., 21(4), 294-306. https://doi.org/10.1080/13287982.2020.1809811.   DOI
25 Peng, K., Yu, T., Hadi, M.N.S. and Huang, L. (2018), "Compressive behavior of hybrid double-skin tubular columns with a rib stiffened steel inner tube", Compos. Struct., 204, 634-644. https://doi.org/10.1016/j.compstruct.2018.07.083.   DOI
26 Gholampour, A., Ozbakkaloglu, T. and Hassanli, R. (2017), "Behavior of rubberized concrete under active confinement", Constr. Build. Mater., 138, 372-382, https://doi.org/10.1016/j.conbuildmat.2017.01.105.   DOI
27 Shakir-Khalil, H. (1991), "Composite columns of double-skinned shells", J. Constr. Steel Res., 19, 133-152. https://doi.org/10.1016/0143-974X(91)90038-3.   DOI
28 Ren, F., Chen, J., Chen, G., Guo, Y. and Jiang, T. (2018), "Seismic behavior of composite shear walls incorporating concrete-filled steel and FRP tubes as boundary elements", Eng. Struct., 168, 405-419. https://doi.org/10.1016/j.engstruct.2018.04.032.   DOI
29 Idris, Y. and Ozbakkaloglu, T. (2015), "Flexural behavior of FRPHSC-steel double skin tubular beams under reversed-cyclic loading", Thin-Wall. Struct., 87, 89-101. https://doi.org/10.1016/j.tws.2014.11.003.   DOI
30 Wang, W., Wu, C. and Liu, Z. (2019), "Compressive behavior of hybrid double-skin tubular columns with ultra high performance fiber-reinforced concrete (UHPFRC)", Eng. Struct., 180, 419-441. https://doi.org/10.1016/j.engstruct.2018.11.048.   DOI
31 Wong, Y.L., Yu, T., Teng, J.G. and Dong, S.L. (2008), "Behavior of FRP-confined concrete in annular section columns", Compos. Part B: Eng., 39, 451-466. https://doi.org/10.1016/j.compositesb.2007.04.001.   DOI
32 Xiong, Z., Deng, J., Liu, F., Li, L. and Feng, W. (2018), "Experimental investigation on the behavior of GFRP-RAC-steel double-skin tubular columns under axial compression", Thin-Wall. Struct., 132, 350-361, https://doi.org/10.1016/j.tws.2018.08.026.   DOI
33 Yi, O., Zhuge, Y., Ma, X., Gravina, R., Mills, J.E. and Youssf, O. (2021), "Push-off and pull-out bond behavior of CRC composite slabs - an experimental investigation", Eng. Struct., 228, article no. 111480, 1-19. https://doi.org/10.1016/j.engstruct.2020.111480   DOI
34 Chan, C.W., Yu, T., Zhang, S.S. and Xu, Q.F. (2019), "Compressive behavior of FRP-confined rubber concrete", Constr. Build. Mater., 211, 416-426. https://doi.org/10.1016/j.conbuildmat.2019.03.211.   DOI
35 Wei, S., Mau, S.T., Vipulanandan, C. and Mantrala, S.K. (1995), "Performance of new sandwich tube under axial loading: experiment", J. Struct. Eng., 121(12), 1806-1814. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:12(1806).   DOI
36 Yi, O., Mills, J.E., Zhuge, Y., Ma, X., Gravina, R. and Youssf, O. (2020), "Case study of the structural performance of composite slabs with low strength CRC delivered by concrete truck", Case Studies Constr. Mater., 13, article no. e00453, 1-18, https://doi.org/10.1016/j.cscm.2020.e00453.   DOI
37 Youssf, O., ElGawady, M.A. and Mills, J.E. (2015), "Experimental investigation of crumb rubber concrete columns under seismic loading", Structures, 3, 13-27. https://doi.org/10.1016/j.istruc.2015.02.005   DOI
38 Youssf, O., Mills, J.E., Benn, T., Zhuge, Y., Ma, X., Roychand, R. and Gravina, R. (2020), "Development of crumb rubber concrete for practical application in the residential construction sector - design and processing", Constr. Build. Mater., 260, article no. 119813, 1-12, https://doi.org/10.1016/j.conbuildmat.2020.119813.   DOI
39 Zeng, L., Li, L., Chen, L. and Liu, F. (2019), "Study of compressive behavior of FRP-recycled aggregate concrete-steel stub columns", Mag. Concrete Res,, 71(15), 794-808. https://doi.org/10.1680/jmacr.17.00560.   DOI
40 Zheng, J. and Ozbakkaloglu, T. (2017), "Sustainable FRP-recycled aggregate concrete-steel composite columns:Behavior of circular and square columns under axial compression", Thin-Wall. Struct., 120, 60-69. https://doi.org/10.1016/j.tws.2017.08.011.   DOI
41 Youssf, O., Hassanli, R. and Mills, J.E. (2017), "Mechanical performance of FRP-confined and unconfined crumb rubber concrete containing high rubber content", J. Build. Eng., 11, 115-126. https://doi.org/10.1016/j.jobe.2017.04.011.   DOI
42 Yu, T. and Teng, J.G. (2013), "Behavior of hybrid FRP-concrete-steel double-skin tubular columns with a square outer tube and a circular inner tube subjected to axial compression", J. Compos. Constr., 17(2), 271-279. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000331.   DOI
43 Yu, T., Wong, Y. L., Teng, J.G., Dong S.L. and Lam, E.S.S. (2006), "Flexural behavior of hybrid FRP-concrete-steel double-skin tubular members", J. Compos. Constr., 10(5), 443-452. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:5(443).   DOI
44 Zhang, B., Teng, J.G. and Yu, T. (2015), "Experimental behavior of hybrid FRP-concrete-steel double-skin tubular columns under combined axial compression and cyclic lateral loading", Eng. Struct., 99, 214-231. https://doi.org/10.1016/j.engstruct.2015.05.002.   DOI
45 Fanggi, B. and Ozbakkaloglu, T. (2015), 'Square FRP-HSC-steel composite columns: Behavior under axial compression", Eng. Struct., 92, 156-171. https://doi.org/10.1016/j.engstruct.2015.03.005.   DOI
46 Hassanli, R., Youssf, O. and Mills, JE. (2017a), "Experimental investigations of reinforced rubberized concrete structural members", J. Build. Eng., 10, 149-165. https://doi.org/10.1016/j.jobe.2017.03.006.   DOI
47 Eltayeb, E., Ma, X., Zhuge, Y., Youssf, O., Mills, J.E., Xiao, J. and Singh, A. (2020b), "Structural performance of composite panels made of profiled steel skins and foam rubberised concrete under axial compressive loads", Eng. Struct., 211, article no. 110448, 1-21, https://doi.org/10.1016/j.engstruct.2020.110448.   DOI
48 Yu, T., Zhang, B., Cao, Y.B. and Teng, J.G. (2012), "Behavior of hybrid FRP-concrete-steel double-skin tubular columns subjected to cyclic axial compression", Thin-Wall. Struct., 61, 196-203. https://doi.org/10.1016/j.tws.2012.06.003.   DOI
49 Yu, T., Zhang, S., Huang, L. and Chan, C. (2017), "Compressive behavior of hybrid double-skin tubular columns with a large rupture strain FRP tube", Compos. Struct., 171, 10-18. https://doi.org/10.1016/j.compstruct.2017.03.013.   DOI
50 Zhao, X.L., Grzebieta, R. and Elchalakani, M. (2002), "Tests of concrete-filled double skin CHS composite stub columns", Steel Compos. Struct., 2(2), 129-146. https://doi.org/10.12989/scs.2002.2.2.129.   DOI
51 Zhang, B., Teng, J.G. and Yu, T. (2017), "Compressive behavior of double-skin tubular columns with high-strength concrete and a filament-wound FRP tube", J. Compos. Constr., 21(5). Article Number: 04017029. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000800.   DOI
52 Zhou, Y., Liu, X., Xing, F., Li, D., Wang, Y. and Sui, L. (2017), "Behavior and modeling of FRP-concrete-steel double-skin tubular columns made of full lightweight aggregate concrete", Constr. Build. Mater., 139, 52-63. https://doi.org/10.1016/j.conbuildmat.2016.12.154   DOI
53 Li, D., Gravina, R., Zhuge, Y. and Mills, J.E. (2020b), "Bond behavior of steel-reinforcing bars in Crumb Rubber Concrete (CRC)", Aus. J. Civil Eng., 18(1), 2-17. https://doi.org/10.1080/14488353.2019.1680073.   DOI
54 Mendis, A.S.M., Al-Deen, S. and Ashraf, M. (2017), "Effect of rubber particles on the flexural behavior of reinforced crumbed rubber concrete beams", Constr. Build. Mater., 154, 644-657. https://doi.org/ 10.1016/j.conbuildmat.2017.07.220.   DOI
55 Hassanli, R., Youssf, O. and Mills, J.E. (2017b), "Seismic performance of precast posttensioned segmental FRP-confined and unconfined crumb rubber concrete columns", J. Compos. Constr., 21(4), https://doi.org/10.1061/(ASCE)CC.1943-5614.0000789.   DOI
56 Kim, J., Kwak, H. and Kwak, J. (2013), "Behavior of hybrid double skin concrete filled circular steel tube columns", Steel Compos. Struct., 14(2), 191-204. https://doi.org/10.12989/scs.2013.14.2.191.   DOI
57 Li, D., Mills, J.E., Benn, T., Ma, X., Gravina, R. and Zhuge, Y. (2016), "Review of the performance of high-strength rubberized concrete and its potential structural applications", Adv. Civil Eng. Mater., 5(1), 149-166. https://doi.org/10.1520/ACEM20150026.
58 Li, D., Zhuge, Y., Gravina, R., Benn, T. and Mills, J.E. (2020a), "Creep and drying shrinkage behavior of crumb rubber concrete (CRC)", Aus. J. Civil Eng., 18(2). 187-204. https://doi.org/10.1080/14488353.2020.1761510.   DOI
59 Ozbakkaloglu, T., Fanggi, B. and Zheng, J. (2016), "Confinement model for concrete in circular and square FRP-concrete-steel double-skin composite columns", Mater. Design, 96, 458-469. https://doi.org/10.1016/j.matdes.2016.02.027.   DOI