DOI QR코드

DOI QR Code

ON MINIMAL SURFACES WITH GAUSSIAN CURVATURE OF BIANCHI SURFACE TYPE

  • Min, Sung-Hong (Department of Mathematics Chungnam National University)
  • Received : 2021.08.20
  • Accepted : 2021.10.20
  • Published : 2021.11.15

Abstract

We consider the local uniqueness of a catenoid under the condition for the Gaussian curvature analogous to Bianchi surfaces. More precisely, if a nonplanar minimal surface in ℝ3 has the Gaussian curvature $K={\frac{1}{(U(u)+V(v))^2}}$ for any functions U(u) and V (v) with respect to a line of curvature coordinate system (u, v), then it is part of a catenoid. To do this, we use the relation between a conformal line of curvature coordinate system and a Chebyshev coordinate system.

Keywords

References

  1. S. S. Chern, Geometrical interpretation of the sinh-Gordon equation, Ann. Polon. Math., 39 (1981), 63-69. https://doi.org/10.4064/ap-39-1-63-69
  2. C. M. C. Riveros and A. M. V. Corro, Surfaces with constant Chebyshev angle, Tokyo J. Math., 35 (2012), no. 2, 359-366. https://doi.org/10.3836/tjm/1358951324
  3. C. M. C. Riveros and A. M. V. Corro, A characterization of the catenoid and helicoid, Internat. J. Math., 24 (2013), no. 6, 1350045, 1-11. https://doi.org/10.1142/S0129167X13500456
  4. A. Fujioka, Bianchi surfaces with constant Chebyshev angle, Tokyo J. Math., 27 (2004), no. 1, 149-153. https://doi.org/10.3836/tjm/1244208481
  5. E. Lee, Uniqueness of families of minimal surfaces in ℝ3, J. Korean Math. Soc., 55 (2018), no. 6, 1459-1468. https://doi.org/10.4134/JKMS.J170757
  6. D. A. Korotkin, On some integrable cases in surface theory, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 234 (1996), 65-124.
  7. A. Papadopoulos, Euler and Chebyshev: From the sphere to the plane and backwards, arXiv:1608.02724v1 [math.HO].