DOI QR코드

DOI QR Code

부산 영도 내만에서 식물플랑크톤 군집의 주간 변동 특성

Weekly Variation of Phytoplankton Communities in the Inner Bay of Yeong-do, Busan

  • 양원석 (한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과) ;
  • 최동한 (한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과) ;
  • 원종석 (한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과) ;
  • 김지훈 (한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과) ;
  • 현명진 (한국해양과학기술원 해양생태연구센터) ;
  • 이하은 (한국해양과학기술원 해양생태연구센터) ;
  • 이연정 (한국해양과학기술원 해양생태연구센터) ;
  • 노재훈 (한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과)
  • YANG, WONSEOK (Department of Convergence Study on the Ocean Science and Technology Ocean Science and Technology School, Korea Maritime and Ocean University) ;
  • CHOI, DONG HAN (Department of Convergence Study on the Ocean Science and Technology Ocean Science and Technology School, Korea Maritime and Ocean University) ;
  • WON, JONGSEOK (Department of Convergence Study on the Ocean Science and Technology Ocean Science and Technology School, Korea Maritime and Ocean University) ;
  • KIM, JIHOON (Department of Convergence Study on the Ocean Science and Technology Ocean Science and Technology School, Korea Maritime and Ocean University) ;
  • HYUN, MYUNG JIN (Marine Ecosystem Research Center, Korea Institute of Ocean Science & Technology) ;
  • LEE, HAEUN (Marine Ecosystem Research Center, Korea Institute of Ocean Science & Technology) ;
  • LEE, YEONJUNG (Marine Ecosystem Research Center, Korea Institute of Ocean Science & Technology) ;
  • NOH, JAE HOON (Department of Convergence Study on the Ocean Science and Technology Ocean Science and Technology School, Korea Maritime and Ocean University)
  • 투고 : 2021.01.09
  • 심사 : 2021.10.07
  • 발행 : 2021.11.30

초록

연안역에서 나타나는 식물플랑크톤 군집의 연중 변동 특성을 확인하기 위하여, 일 년여간 부산 영도 내만의 고정점에서 생물량 및 다양성을 매주 조사하였다. 연구 해역은 엽록소 a가 0.43~7.58 mg m-3 범위를 나타내어 중영양에서 부영양 특성을 나타내었다. 조사 기간 동안 엽록소 a 중 3 ㎛ 이상 크기의 식물플랑크톤이 차지하는 비율은 평균 80% 내외를 차지하여 높았다. 이들 3 ㎛ 이상 크기의 식물플랑크톤에서는 규조류(Bacillariophyta)가 봄과 여름에 가장 우점하였으며, 가을과 겨울에는 은편모조강(Cryptophyceae)이 우점하였다. 반면, 3 ㎛ 이하 크기의 초미소식물플랑크톤에서는 마미엘라강(Mamiellophyceae)이 대부분의 시기에 가장 우점하였으며, 은편모조강(Cryptophyceae)이 연중 평균(+표준편차) 17.7 ± 17.6%로 비교적 높았으나 계절적 변동이 컸다. 와편모조강(Dinophyceae)은 드물지만 60.4%까지 매우 높게 우점하기도 하였다. 본 연구에서 13개월 간 일주일 간격의 정기 관측을 통해 육지에 인접한 천해 연안 식물플랑크톤 군집이 짧은 시간 규모에서 변동함을 파악할 수 있었다. 이러한 지속적인 고정점 관측은 식물플랑크톤의 단·장기 변동 특성과 기후 및 환경 변화의 영향을 이해하는 데 중요한 자료를 제공할 수 있을 것이다.

To understand the temporal variation of phytoplankton communities in a coastal area, the biomass and diversity were weekly investigated in the inner bay of Yeong-do, Busan. In the study area, chlorophyll a concentration ranged from 0.43~7.58 mg m-3 during the study, indicating the study area was in mesotrophic or eutrophic status. The fractions of chlorophyll a occupied by large phytoplankton (> 3 ㎛ diameter) exhibited an average of 80% of total chlorophyll a in this study. Among the large phytoplankton, while Bacillariophyta was the most dominant in spring and summer, Cryptophyceae prevailed in the fall and winter. On the contrary, in the picophytoplankton community less than 3 ㎛ in diameter, Mamiellophyceae was the most dominant in most seasons, Cryptophyceae was relatively high with an average of 17.7 ± 17.6% throughout the year, but seasonal variations were large. Dinophyceae rarely occupied a higher fraction up to 60.4% of the picophytoplankton community. By weekly monitoring at a coastal station for 13 months, it is suggested that phytoplankton communities in coastal waters could be changed on a short time scale. If data are steadily accumulated at the time-series monitoring site for a long time, these will provide important data for understanding the long-term dynamics of phytoplankton as well as the impact of climate and environmental changes.

키워드

과제정보

본 연구는 한국해양과학기술원 주요과제인 '생지화학 순환 및 해양환경변동 연구(PE99912)'의 지원을 받아 수행하였습니다.

참고문헌

  1. 김현정, 문창호, 조현진, 2005. 부산항 퇴적물속 와편모조류 시스트의 시공간적 분포 특성. 바다지, 10(4): 196-203.
  2. 백승호, 신경순, 현봉길, 장풍국, 김현수, 황옥명, 2010. 초여름 남해광역권의 수괴별 식물플랑크톤 군집구조 특성. Ocean Polar Research, 32(1): 1-13.
  3. 백승호, 장민철, 신경순, 2011. 부산과 대산항에서 선박평형수에 유입된 식물플랑크톤의 종조성과 재성장능력. 바다지, 16(2): 106-115.
  4. 윤양호, 1998. 시아해 식물플랑크톤 군집의 계절변동 특성. 한국환경생물학회지, 16(4): 403-409.
  5. 윤양호, 2015. 고군산군도 해역의 식물플랑크톤 군집의 시.공간적 분포 및 출현 환경특성. 한국산학기술학회 논문지, 16: 2287-2300.
  6. 장풍국, 현봉길, 장민철, 신경순, 2016. 우리나라 주요 국제항에 입항하는 중국 기원 선박의 평형수내 수질 및 식물플랑크톤 특성 연구. Journal of Korean Society of Marine Environment & Safety, 22(7): 821-828. https://doi.org/10.7837/kosomes.2016.22.7.821
  7. Affan, A., J.-B. Lee, J.-T. Kim, Y.-C. Choi, J.-M. Kim and J.-G. Myoung, 2007. Seasonal dynamics of phytoplankton and environmental factors around the Chagwi-do off the West Coast of Jeju Island, Korea. Ocean Science Journal, 42: 117-127. https://doi.org/10.1007/BF03020879
  8. Agawin, N.S.R., C.M. Durate and S. Augusti, 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr, 45(3): 591-600. https://doi.org/10.4319/lo.2000.45.3.0591
  9. Alonso-Saez, L., V. Balague, E.L. Sa, O. Sanchez, J.M. Gonzalez, J. Pinhassi, R. Massana, J. Pernthaler, C. Pedros-Alio and J.M. Gasol, 2007. Seasonality in bacterial diversity in north-west Mediterranean coastal waters: assessment through clone libraries, fingerprinting and FISH. FEMS Microbiology Ecology, 60: 98-112. https://doi.org/10.1111/j.1574-6941.2006.00276.x
  10. Baek, S.H., D. Kim, Y.O. Kim, M. Son, Y.-J. Kim, M. Lee and B.S. Park, 2019. Seasonal changes in abiotic environmental conditions in the Busan coastal region (South Korea) due to the Nakdong River in 2013 and effect of these changes on phytoplankton communities, Continental Shelf Research, 175(1): 116-126. https://doi.org/10.1016/j.csr.2019.01.014
  11. Booth, B., P. Larouche, S. Belanger, B. Klein, D. Amiel and Z.-P. Mei, 2002. Dynamics of Chaetoceros socialis blooms in the North Water. Deep Sea Research Part II: Topical Studies in Oceanography, 49: 5003-5025. https://doi.org/10.1016/S0967-0645(02)00175-3
  12. Cadee, G.C. and J. Hegeman, 1991. Historical phytoplankton data of the Marsdiep. Hydrobiological Bulletin, 24: 111-118. https://doi.org/10.1007/BF02260427
  13. Caroppo, C., 2000. The contribution of picophytoplankton to community structure in a Mediterranean brackish environment. Journal of Plankton Research, 22: 381-397. https://doi.org/10.1093/plankt/22.2.381
  14. Choi, D.H., S.M. An, S. Chun, E.C. Yang, K.E. Selph, C.M. Lee and J.H. Noh, 2016. Dynamic changes in the composition of photosynthetic picoeukaryotes in the northwestern Pacific Ocean revealed by high-throughput tag sequencing of plastid 16S rRNA genes. FEMS Microbiology Ecology, 92.
  15. Cloern, J.E., 2018. Why large cells dominate estuarine phytoplankton. Limnology and Oceanography, 63: S392-S409. https://doi.org/10.1002/lno.10749
  16. Crossland, C., H. Kremer, H. Lindeboom, J. Marshall Crossland and M.A. Tissier, 2005. Coastal Fluxes in the Anthropocene. Berlin, Heidelberg: Springer, pp. 1-37.
  17. Dame, M., M. Alber, D. Allen, M. Mallin, C. Montague, A. Lewitus, A. Chalmers, R. Gardner, C. Gilman, B. Kjerfve, J. Pinckney and N. Smith, 2000. Estuaries of the South Atlantic coast of North America: their geographical signatures. Estuaries, 23: 793-819. https://doi.org/10.2307/1352999
  18. Foulon, E., F. Not, F. Jalabert, T. Cariou, R. Massana and N. Simon, 2008. Ecological niche partitioning in the picoplanktonic green alga Micromonas pusilla: evidence from environmental surveys using phylogenetic probes. Environmental Microbiology, 10: 2433-2443. https://doi.org/10.1111/j.1462-2920.2008.01673.x
  19. Guillou, L., W. Eikrem, M.-J. Chretiennot-Dinet, F. Le Gall, R. Massana, K. Romari, C. Pedros-Alio and D. Vaulot, 2004. Diversity of picoplanktonic prasinophytes assessed by direct nuclear SSU rDNA sequencing of environmental samples and novel isolates retrieved from oceanic and coastal marine ecosystems. Protist, 155: 193-214. https://doi.org/10.1078/143446104774199592
  20. Guo, S., Y. Feng, L. Wang, M. Dai, Z. Liu, Y. Bai and J. Sun, 2014. Seasonal variation in the phytoplankton community of a continental-self sea: the East China Sea. Marine Ecology Progress Series, 516: 103-126. https://doi.org/10.3354/meps10952
  21. Hai, D.-N., N.-N Lam and J.W. Dippner, 2010. Development of Phaeocystis globosa blooms in the upwelling waters of the South Central coast of Viet Nam. Journal of Marine Systems, 83: 253-261. https://doi.org/10.1016/j.jmarsys.2010.04.015
  22. Hedges, J.I., W.A. Clark and G.L. Come, 1988. Fluxes and reactivities of organic matter in a coastal marine bay. Limnology and Oceanography, 33: 1137-1152. https://doi.org/10.4319/lo.1988.33.5.1137
  23. Illumina, 2013. 16S Metagenomic Sequencing Library Preparation. https://support.illumina.com/downloads/16s metagenomic sequencing library preparation.html (18 July 2018, date last accessed).
  24. Kang, Y., H.-Y. Kang, D. Kang, Y.-J. Lee, T.-I. Kim and C.-K. Kang, 2019. Temperature-dependent bifurcated seasonal shift of phytoplankton community composition in the coastal water off southwestern Korea. Ocean Science Journal., 54: 467-486. https://doi.org/10.1007/s12601-019-0025-7
  25. Kim, D.Y., P.D. Countway, A.C. Jones, A. Schnetzer, W. Yamashita, C. Tung and D.A. Caron, 2014. Monthly to interannual variability of microbial eukaryote assemblages at four depths in the eastern North Pacific. The ISME Journal, 8: 515-530. https://doi.org/10.1038/ismej.2013.173
  26. Klaveness, D., 1988. Ecology of the Cryptomonadida: a first review. Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, Cambridge, pp. 105-133.
  27. Kozich, J.J., S.L. Westcott, N.T. Baxter, S.K. Highlander and P.D. Schloss, 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Applied and environmental microbiology, 79: 5112-5120. https://doi.org/10.1128/AEM.01043-13
  28. Lee, S. and S. Yoo, 2016. Interannual variability of the phytoplankton community by the changes in vertical mixing and atmospheric deposition in the Ulleung Basin, East Sea: A modelling study. Ecological Modelling, 322: 31-47. https://doi.org/10.1016/j.ecolmodel.2015.11.012
  29. Lv, H., J. Yang, L. Liu, X. Yu, Z. Yu and P. Chiang, 2014. Temperature and nutrients are significant drivers of seasonal shift in phytoplankton community from a drinking water reservoir, subtropical China. Environ. Sci. Pollut. Res, 21: 5917-5928. https://doi.org/10.1007/s11356-014-2534-3
  30. Maritime and Port Authority. 1991. An environmental assessment on the four level development of Pusan Harbor, pp. 546.
  31. Mendes, C.R.B., V.M. Tavano, M.C. Leal, M.S. De Souza, V. Brotas and C.A.E. Garcia, 2013. Shifts in the dominance between diatoms and cryptophytes during three late summers in the Bransfield Strait (Antarctic Peninsula). Polar Biology, 36: 537-547. https://doi.org/10.1007/s00300-012-1282-4
  32. Moisan, T.A., K.M. Rufty, J.R. Moisan and M.A. Linkswiler, 2017. Satellite observations of phytoplankton functional type spatial distributions, phenology, diversity, and ecotones. Front. Mar. Sci, 4: 1-24.
  33. Moreau, H., B. Verhelst, A. Couloux, E. Derelle, S. Rombauts, N. Grimsley, M. Van Bel, J. Poulain, M. Katinka and M.F. Hohmann-Marriott, 2012. Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage. Genome Biology, 13: R74. https://doi.org/10.1186/gb-2012-13-8-r74
  34. Needham, D.M. and J.A. Fuhrman, 2016. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nature Microbiology, 1: 1-7.
  35. Not, F., M. Latasa, R. Scharek, M. Viprey, P. Karleskind, V. Balague, I. Ontoria-Oviedo, A. Cumino, E. Goetze and D. Vaulot, 2008. Protistan assemblages across the Indian Ocean, with a specific emphasis on the picoeukaryotes. Deep Sea Research Part I: Oceanographic Research Papers, 55: 1456-1473. https://doi.org/10.1016/j.dsr.2008.06.007
  36. Not, F., R. Massana, M. Latasa, D. Marie, C. Colson, W. Eikrem, C. Pedros-Alio, D. Vaulot and N. Simon, 2005. Late summer community composition and abundance of photosynthetic picoeukaryotes in Norwegian and Barents Seas. Limnology and Oceanography, 50: 1677-1686. https://doi.org/10.4319/lo.2005.50.5.1677
  37. Parsons, T.R., 2013. A manual of chemical & biological methods for seawater analysis. Elsevier.
  38. Riegman, R., A.A. Noordeloos and G.C. Cadee, 1992. Phaeocystis blooms and eutrophication of the continental coastal zones of the North Sea. Marine Biology, 112: 479-484. https://doi.org/10.1007/BF00356293
  39. Schloss, P.D., S.L. Westcott, T. Ryabin, J.R. Hall, M. Hartmann, E.B. Hollister, R.A. Lesniewski, B.B. Oakley, D.H. Parks and C.J. Robinson, 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75: 7537-7541. https://doi.org/10.1128/AEM.01541-09
  40. Somerville, C., I. Knight, W. Straube and R. Colwell, 1989. Simple, rapid method for direct isolation of nucleic acids from aquatic environments. Applied and Environmental Microbiology, 55: 548-554. https://doi.org/10.1128/aem.55.3.548-554.1989
  41. Teeling, H., B.M. Fuchs, D. Becher, C. Klockow, A. Gardebrecht, C.M. Bennke, M. Kassabgy, S. Huang, A.J. Mann and J. Waldmann, 2012. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science, 336: 608-611. https://doi.org/10.1126/science.1218344
  42. Tragin, M. and D. Vaulot, 2018. Green microalgae in marine coastal waters: The Ocean Sampling Day (OSD) dataset. Scientific Reports, 8: 14020. https://doi.org/10.1038/s41598-018-32338-w
  43. UNEP, 2006. Marine and coastal ecosystems and human wellbeing: a synthesis report based on the findings of the millennium ecosystem assessment. UNEP, pp.1-76.
  44. Wang, Q., G.M. Garrity, J.M. Tiedje and J.R. Cole, 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73: 5261-5267. https://doi.org/10.1128/AEM.00062-07
  45. Wang, X., K.W. Tang, Y. Wang and W.O. Smith Jr, 2010. Temperature effects on growth, colony development and carbon partitioning in three Phaeocystis species. Aquatic Biology, 9: 239-249. https://doi.org/10.3354/ab00256
  46. Worden, A.Z., J.-H. Lee, T. Mock, P. Rouze, M.P. Simmons, A.L. Aerts, A.E. Allen, M.L. Cuvelier, E. Derelle and M.V. Everett, 2009. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science, 324: 268-272. https://doi.org/10.1126/science.1167222