DOI QR코드

DOI QR Code

실리콘 이종접합 태양전지 개발동향

Recent Development of High-efficiency Silicon Heterojunction Technology Solar Cells

  • 이아름 (태양광연구단, 한국에너지기술연구원) ;
  • 유진수 (태양광연구단, 한국에너지기술연구원) ;
  • 박성은 (태양광연구단, 한국에너지기술연구원) ;
  • 박주형 (태양광연구단, 한국에너지기술연구원) ;
  • 안승규 (태양광연구단, 한국에너지기술연구원) ;
  • 조준식 (태양광연구단, 한국에너지기술연구원)
  • Lee, Ahreum (Photovoltaics Research Department, Korea Institute of Energy Research) ;
  • Yoo, Jinsu (Photovoltaics Research Department, Korea Institute of Energy Research) ;
  • Park, Sungeun (Photovoltaics Research Department, Korea Institute of Energy Research) ;
  • Park, Joo Hyung (Photovoltaics Research Department, Korea Institute of Energy Research) ;
  • Ahn, Seungkyu (Photovoltaics Research Department, Korea Institute of Energy Research) ;
  • Cho, Jun-Sik (Photovoltaics Research Department, Korea Institute of Energy Research)
  • 투고 : 2021.12.03
  • 심사 : 2021.12.10
  • 발행 : 2021.12.31

초록

Silicon heterojunction technology (HJT) solar cells have received considerable attention due to advantages that include high efficiency over 26%, good performance in the real world environment, and easy application to bifacial power generation using symmetric device structure. Furthermore, ultra-highly efficient perovskite/c-Si tandem devices using the HJT bottom cells have been reported. In this paper, we discuss the unique feature of the HJT solar cells, the fabrication processes and the current status of technology development. We also investigate practical challenges and key technologies of the HJT solar cell manufacturers for reducing fabrication cost and increasing productivity.

키워드

과제정보

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20213030010240).

참고문헌

  1. Liu, Y., Li, Y., Wu, Y., Yang, G., Mazzarella, L., Moya, P. P., Tamboli, A. C., Weber, K., Boccard, M., Isabella, O., Yang, X., Sun, B., "High-Efficiency Silicon Heterojunction Solar Cells: Materials, Devices and Applications," Materials Science & Engineering R, 142, 100579 (2020). https://doi.org/10.1016/j.mser.2020.100579
  2. Green, M. A., "Photovoltaic technology and visions for the future," Prog. Energy, 1, 013001 (2019). https://doi.org/10.1088/2516-1083/ab0fa8
  3. Sai, H., Oku, T., Sato, Y., Tabane, M., Matsui, T., Matsubara, K., "Potential of very thin and high-efficiency silicon heterojunction solar cells," Prog Photovolt Res Appl., 2-11 (2019).
  4. Tohoda, S., Fujishima, D., Yano, A., Ogane, A., Matsuyama, K., Nakamura, Y., Tokuoka, N., Kanno, H., Kinoshita, T., Sakata, H., Taguchi, M., Maruyama, E., "Future directions for higher-efficiency HIT solar cells using a Thin Silicon Wafer," J. of Non-cry. Sol., 358, 2219-2222 (2012). https://doi.org/10.1016/j.jnoncrysol.2012.03.025
  5. Yamamoto, K., Yoshikawa, K., Uzu, H., Adachi, D., "High-efficiency heterojunction crystalline Si solar cells," Jpn. J. Appl. Phys., 57, 08RB20 (2018). https://doi.org/10.7567/JJAP.57.08RB20
  6. Erfurt, G., "Pushing the boundaries: HJT technology to decrease LCOE" (2017).
  7. Soderstrom, T., Papet, P., Yao, Y., Ufheil, J., "Smartwire connection technology," In Proceedings of the 28th EU PVSEC, 495-499 (2013).
  8. Meyer burger, "Smartwire connection technology SWCT," (2019).
  9. Chunduri, S. K., Schmela, M., "Heterojunction solar technology," TaiyangNews, Munich, Germany (2019).
  10. Ju, M., Kim, S., Kim, Y., Cho, E. C., Yi, J., "High Efficiency Silicon Solar Cells," 물리학과 첨단기술, 2-6 (2019).
  11. Von Ardenne, "Equipment for high-efficiency solar concepts," (2020).
  12. Vetter, E., Zhao, J., Schmidt, C., ">24% Efficient Silicon Heterojunction Solar Cells Applying Meyer Burger's Mass Production Tools and 335W SWCT Module," In Proceedings of the 12th SNEC, 495-499 (2018).
  13. Albrecht, S., Saliba, M., Correa-Baena, J. P., Jager, K., Korte, L., Hagfeldt, A., Gratzel, M., Rech, B., "Towards optical optimization of planar monolithic perovskite / silicon-heterojunction tandem solar cells," J. of Opt., 18, 064012 (2016). https://doi.org/10.1088/2040-8986/18/6/064012
  14. Lu, X., Koppes, M., Bronsveld, P. C. P., "Simplified surface cleaning for fabrication of silicon heterojunction solar cells," AIP Conference Proceedings 1999, 050005 (2018).
  15. Li, Z., Yang, Y., Zhang, X., Feng, Z., Verlinden, P. J., "High-Lifetime Wafer Cleaning Method Using Ozone Dissolved in DIW/HF/HCl Solution," In Proceedings of the 29th EU PVSEC, 2012-2014 (2014).
  16. Cheng, X., "Roadmap for industrial mass production equipment for high efficiency silicon heterojunction solar cells," 3rd International workshop on Silicon HeteroJunction solar cells, Forschungszentrum Julich GmbH, Germany (2020).
  17. Bakhshi, S., Zin, N., Ali H., Wilson, M., Chanda, D., Davis, K. O., Schoenfeld, W. V., "Simple and versatile UV-ozone oxide for silicon solar cell applications," Sol. Energy Mater. Sol. Cells, 185, 505-510 (2018). https://doi.org/10.1016/j.solmat.2018.06.006
  18. Hitzel, S., "High volume PVD & wet chemical equipment-the key for successful SHJ solar cell production," 4th International workshop on Silicon HeteroJunction solar cells, Forschungszentrum Julich GmbH, Germany (2021).
  19. Descoeudres, A., Allebe, C., Badel, N., Barraud, L., Champliaud, J., Debrot, F., Faes, A., Lachowicz, A., Levrat, J., Nicolay, S., Sansonnens, L, Despeisse, M., Ballif, C., "Silicon heterojunction solar cells: towards low-cost high-efficiency industrial devices and application to low-concentration PV," Energy Procedia, 77, 508-514 (2015). https://doi.org/10.1016/j.egypro.2015.07.072
  20. Strinitz, F., Jaouhari, A. E., Schoerg, F., Fuerst, M., Plettig, M., Kuehnlein, H., "Advanced alkaline texturing and cleaning for PERC and HJT solar cells," Energy Procedia, 130, 23-30 (2017). https://doi.org/10.1016/j.egypro.2017.09.409
  21. Zhang, Z., Huber, M., Corda, M., "Key Equipments for O3-based Wet-Chemical Surface Engineering and PVD Processes Tailored for High-Efficiency Silicon Heterojunction Solar Cells," Energy Procedia, 130, 31-35 (2017). https://doi.org/10.1016/j.egypro.2017.09.410
  22. Tian, X., Han, P., Zhao, G., Yang, R., Li, L., Meng, Y., Guo, T., "Pyramid size control and morphology treatment for high-efficiency silicon heterojunction solar cells," J. of Semicon., 40, 032703 (2019). https://doi.org/10.1088/1674-4926/40/3/032703
  23. Zhao, J., Konig, M., Wissen, A., Breus, V., Decker, D., Fritzsche, M., Schorch, M., Nonnenmacher, H. J., Leonhardt, M., Grosse, T., Hausmann, J., Waltinger, A., Landgraf, D., Burkhardt, S., Mehlich, H., Vetter, E., Schitthelm, F., Yao, Y., Soderstrom, T., Richter, A., Habermann, D., Leu, S., ">23% Silicon heterojunction solar cells in Meyer Burger's Demo line: Results of pilot production on mass production tools," In Proceedings of the IEEE 44th PVSC, 1752-1754 (2017).
  24. Nishimoto, T., Takai, M., Miyahara, H., Kondo, M., Matsuda, A., "Amorphous silicon solar cells deposited at high growth rate," J. of Non-Crys. Sol., 299-302, 1116-1122 (2002). https://doi.org/10.1016/S0022-3093(02)00942-0
  25. Nishimoto, T., Takai, M., Miyahara, H., Kondo, M., Matsuda, A., "Development of highly stable hydrogenated amorphous silicon films for application in solar cells," Inter. J. of Mod. Phys. B, 20, 2035-2048 (2006). https://doi.org/10.1142/S0217979206033309
  26. Chunduri, S. K., Schmela, M., "High Efficiency cell technologies," Taiyang News, Duesseldorf, Germany (2019).
  27. Seidel, M., "Heterojunction cell technology of Meyer Burger: Production processes and measuring methods," Meyer Burger Article PV production annual 2013 (2013).
  28. Ballif, C., Boccard1, M., Descoeudres, A., Allebe, C., Faes, A., Dupre, O., Haschk1 J., Ribeyron, P. J., Despeisse, M., "Solving all bottlenecks for silicon heterojunction technology," Photovoltaics International (2019).
  29. Matsumura, H., "Advantages of Cat-CVD technology in fabrication of HJT solar cells silicon heterojunction solar cells," 3rd International workshop on Silicon HeteroJunction solar cells, Forschungszentrum Julich GmbH, Germany (2020).
  30. Shakhray, I., Abramov, A., Abolmasov, S., Terukova, E., Andronikov, D., "Heterojunction technology: The path to high efficiency in mass production," Photovoltaics International, 52-61 (2019).
  31. Cruz, A., Erfurt, D., Kohler, R., Dimer, M., Schneiderlochner, E., Stannowski, B., "Industrial TCOs for HJT solar cells: Approaches for optimizing performance and cost," Photovoltaics International, 86-96 (2020).
  32. Chunduri, S. K., Schmela, M., "Market survey metallization pastes 2019/20," Taiyang News, Duesseldorf, Germany (2020).
  33. Faes, A., Lachowicz, A., Bettinelli, A., Ribeyron, P. J., Lerat, J. F., Munoz, D., Geissbuhler, J., Li, H. Y., Ballif, C., Despeisse, M., "Metallization and interconnection for high-efficiency bifacial silicon heterojunction solar cells and modules," Photovoltaics Bulletin, 41, 65-76 (2018).
  34. Faes, A., Lachowicz, A., Bettinelli, A., Ribeyron, P. J., Lerat, J. F., Munoz, D., Geissbuhler, J., Li, H. Y., Ballif, C., Despeisse, M., "Copper plating processes for silicon heterojunction solar cells: and overview," In Proceedings of the 36th EU PVSEC, 564-567 (2019).
  35. Faes, A., Lachowicz, A., Bettinelli, A., Ribeyron, P. J., Lerat, J. F., Munoz, D., Geissbuhler, J., Li, H. Y., Ballif, C., Despeisse, M., "Metallization and interconnection for high-efficiency bifacial silicon heterojunction solar cells and modules," Photovoltaics Bulletin, 41, 65-76 (2018).
  36. Despeisse, M., "International Technology Roadmap for Photovoltaic," 12th edit ITRPV, Frankfurt, Germany (2021).