Acknowledgement
"This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology Research Center) support program(IITP-2018-0-01405) supervised by the IITP(Institute for Information & Communications Technology Planning & Evaluation)" and this research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2021R1A6A1A03045425).
References
- P. Koehn, F. J. Och & D. Marcu. (2003). Statistical phrase-based translation. In Proceedings of the 2003 Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics (pp. 127-133). DOI : 10.3115/1073445.107346
- Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey & J. Dean. (2016). Google's neural machine translation system: Bridging the gap betweenhuman and machine translation. arXiv preprint arXiv:1609.08144.
- D. Bahdanau, K. H. Cho & Y. Bengio. (2015). Neural machine translation by jointly learning to align and translate. International Conference on Learning Representations, 3, (pp. 1-15).
- I. Sutskever, O. Vinyals & Q. V. Le. (2014). Sequence to sequence learning with neural networks. In Advances in neural information processing systems, 27, (pp. 3104-3112). DOI : 10.5555/2969033.2969173
- Park, C., Eo, S., Moon, H., & Lim, H. S. (2021, June). Should we find another model?: Improving Neural Machine Translation Performance with ONE-Piece Tokenization Method without Model Modification. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Papers (pp. 97-104). DOI : 10.18653/v1/2021.naacl-industry.13
- H. Moon, C. Park, S. Eo, J. Park & H. Lim. (2021). Filter-mBART Based Neural Machine Translation Using Parallel Corpus Filtering. Journal of the Korea Convergence Society, 12(5), 1-7. DOI : 10.15207/JKCS.2021.12.5.001
- C. Park, Y. Lee, C. Lee & H. Lim. (2020). Quality, not quantity?: Effect of parallel corpus quantity and quality on neural machine translation. In The 32st Annual Conference on Human Cognitive Language Technology (pp. 363-368).
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez & I. Polosukhin. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008). DOI : 10.5555/3295222.3295349
- A., Conneau & G. Lample. (2019). Cross-lingual language model pretraining. Advances in Neural Information Processing Systems, 32, (pp.. 7059-7069). DOI : 10.1145/3442381.3449830
- Y. Liu, J. Gu, N. Goyal, X. Li, S. Edunov, M. Ghazvininejad & L. Zettlemoyer. (2020). Multilingual denoising pre-training for neural machine translation. Transactions of the Association for Computational Linguistics, 8, (pp. 726-742). DOI : 10.1162/tacl_a_00343
- B. T. Lowerre. (1976). The harpy speech recognition system. Carnegie Mellon University. DOI : 10.1121/1.2003089
- S. Wiseman & A. M. Rush. (2016). Sequence-to-Sequence Learning as Beam-Search Optimization. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (pp. 1296-1306). DOI : 10.18653/v1/D16-1137
- M. Freitag & Y. Al-Onaizan. (2017). Beam Search Strategies for Neural Machine Translation. In Proceedings of the First Workshop on Neural Machine Translation (pp. 56-60). DOI : 10.18653/v1/W17-3207
- X. Hu, W Li, X. Lan, H. Wu & H. Wang. (2015). Improved beam search with constrained softmax for nmt. Proceedings of MT Summit XV, 297.
- J. Li & D. Jurafsky. (2016). Mutual information and diverse decoding improve neural machine translation. arXiv preprint arXiv:1601.00372.
- J. Li, W. Monroe & D. Jurafsky. (2017). Learning to decode for future success. arXiv preprint arXiv:1701.06549.
- R. Paulus, C. Xiong & R. Socher. (2017). A deep reinforced model for abstractive summarization. arXiv preprint arXiv:1705.04304.
- S. Jean, O. Firat, K. Cho, R. Memisevic & Y. Bengio. (2015). Montreal neural machine translation systems for WMT'15. In Proceedings of the Tenth Workshop on Statistical Machine Translation (pp. 134-140). DOI : 10.18653/v1/W15-3014
- P. Koehn & R. Knowles. (2017). Six Challenges for Neural Machine Translation. In Proceedings of the First Workshop on Neural Machine Translation (pp. 28-39). DOI : 10.18653/v1/W17-3204
- K. Murray & D. Chiang. (2018). Correcting Length Bias in Neural Machine Translation. In Proceedings of the Third Conference on Machine Translation: Research Papers (pp. 212-223). DOI : 10.18653/v1/W18-6322
- W. He, Z. He, H. Wu & H. Wang. (2016, February). Improved neural machine translation with SMT features. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (pp. 151-157). DOI : 10.5555/3015812.3015835
- Y. Yang, L. Huang & M. Ma. (2018). Breaking the Beam Search Curse: A Study of (Re-) Scoring Methods and Stopping Criteria for Neural Machine Translation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (pp. 3054-3059). DOI : 10.18653/v1/D18-1342.
- N. S. Keskar, B. McCann, L. R. Varshney, C. Xiong & R. Socher. (2019). Ctrl: A conditional transformer language model for controllable generation. arXiv preprint arXiv:1909.05858.
- A. Holtzman, J. Buys, M. Forbes, A. Bosselut, D. Golub & Y. Choi. (2018). Learning to Write with Cooperative Discriminators. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 1638-1649). DOI : 10.18653/v1/P18-1152
- Q. Huang, Z. Gan, A. Celikyilmaz, D. Wu, J. Wang & X. He. (2019). Hierarchically structured reinforcement learning for topically coherent visual story generation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 8465-8472) DOI : 10.1609/aaai.v33i01.33018465
- A. Holtzman, J. Buys, L. Du, M. Forbes & Y. Choi. (2019). The Curious Case of Neural Text Degeneration. In International Conference on Learning Representations. arXiv preprint arXiv:1904.09751.
- M. Post & D. Vilar. (2018). Fast Lexically Constrained Decoding with Dynamic Beam Allocation for Neural Machine Translation. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers) (pp. 1314-1324). DOI : 10.18653/v1/N18-1119
- J. E. Hu, H. Khayrallah, R. Culkin, P. Xia, T. Chen, M. Post & B. Van Durme. (2019). Improved lexically constrained decoding for translation and monolingual rewriting. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) (pp. 839-850). DOI : 10.18653/v1/N-19-1090
- L. Huang, K. Zhao & M. Ma. (2017). When to Finish? Optimal Beam Search for Neural Text Generation (modulo beam size). In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (pp. 2134-2139). DOI : 10.18653/v1/D17-1227
- R. Shu & H. Nakayama. (2018). Improving beam search by removing monotonic constraint for neural machine translation. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) (pp. 339-344). DOI : 10.18653/v1/P18-2054
- Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shinohara, T. Shinohara & S. Arikawa. (1999). Byte Pair encoding: A text compression scheme that accelerates pattern matching.
- T. Kudo & J. Richardson. (2018). SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations (pp. 66-71). DOI : 10.18653/v1/D18-2012
- I. Provilkov, D. Emelianenko & E. Voita. (2020). BPE-Dropout: Simple and Effective Subword Regularization. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 1882-1892). DOI : 10.18653/v1/2020.acl-main.170
- C. Hokamp & Q. Liu. (2017). Lexically Constrained Decoding for Sequence Generation Using Grid Beam Search. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 1535-1546). DOI : 10.18653/v1/P17-1141
- C. Park & H. Lim. (2020). A Study on the Performance Improvement of Machine Translation Using Public Korean-English Parallel Corpus. Journal of Digital Convergence, 18(6), 271-277. DOI : 10.14400/JDC.2020.18.6.271
- K. Papineni, S. Roukos, T. Ward & W. J. Zhu. (2002). Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics (pp. 311-318). DOI : 10.3115/1073083.1073135
- C. Park, Y. Yang, K. Park & H. Lim. (2020). Decoding strategies for improving low-resource machine translation. Electronics, 9(10), 1562. DOI : 10.3390/electronics9101562
- C. Park, J. Seo, S. Lee, C. Lee, H. Moon, S. Eo, & H. Lim. (2021). BTS: Back TranScription for Speech-to-Text Post-Processor using Text-to-Speech-to-Text. Proceedings of the 8th Workshop on Asian Translation, (pp. 106-116). DOI : 10.18653/v1/2021.wat-1.10