DOI QR코드

DOI QR Code

Correlation and Spatial Analysis between the number of Confirmed Cases of the COVID-19 and Traffic Volume based on Taxi Movement Data

택시 이동 데이터 기반 COVID-19 확진자 수와 교통량 간의 상관관계 및 공간분석

  • Received : 2021.12.19
  • Accepted : 2021.12.27
  • Published : 2021.12.31

Abstract

The spread and damage of COVID-19 are putting significant pressure on the world, including Korea. Most countries place restrictions on movement and gathering to minimize contact between citizens and these policies have brought new changes to social patterns. This study generated traffic volume data on the scale of a road network using taxi movement data collected in the early stages of the COVID-19 third pandemic to analyze the impact of COVID-19 on movement patterns. After that, correlation analysis was performed with the data of confirmed cases in Daegu Metropolitan City and Local Moran's I was applied to analyze the effect of spatial characteristics. As a result, in terms of the overall road network, the number of confirmed cases showed a negative correlation with taxi driving and at least -0.615. It was confirmed that citizens' movement anxiety was reflected as the number of confirmed cases increased. The commercial and industrial areas in the center of the city confirmed the cold spot with a negative correlation and low-low local Mona's I. However, the road network around medical institutions such as hospitals and spaces with spatial characteristics such as residential complexes was high-high. In the future, this analysis could be used for preventive measures for policymakers due to COVID-19.

COVID-19의 확산과 피해는 대한민국 정부를 포함한 전 세계에 큰 영향을 주고 있다. 대다수 국가는 시민들 간의 접촉을 최소화하기 위해 이동과 집합에 제약을 두고 있으며, 이러한 정책들은 사회적 패턴에 새로운 변화를 가지고 왔다. 본 연구는 COVID-19가 미치는 사회적 영향 중 택시 운행에 대한 영향을 분석하기 위해 COVID-19 3차 대유행 초기에 수집된 대구광역시 택시 이동 데이터를 이용하여 도로 네트워크 규모의 교통량 데이터를 생성하였다. 이후 대구광역시의 확진자 데이터와 상관성 분석을 수행하였으며, 공간적 특성이 가지는 영향을 분석하기 위해 Local Moran's I를 적용하였다. 결과적으로, 전체 도로 네트워크의 택시 운행량과 확진자 수는 음의 상관관계(-0.615)를 나타내었고 이는 확진자 수의 증가에 따른 시민들의 이동 불안감이 반영된 것을 확인하였다. 또한, 본 연구에서는 도로 네트워크의 링크 기반으로 분석을 수행한 결과 도심 중심부의 상업 및 산업 지역은 음의 상관관계와 Local Morna's I의 값이 low-low로 cold spot을 확인하였으며, 병원 같은 의료기관 주변 및 공동주거지와 같은 공간적 특성을 가진 지역의 도로 네트워크는 high-high로 hot spot인 것을 확인하였다. 향후 이러한 분석이 COVID-19에 따른 정책 결정자들의 예방 대책에 활용될 수 있을 것이다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1C1C1012785).

References

  1. Ale-Ahmad, H. and Mahmassani, H. S. (2020), Impact of COVID-19 on taxi operation in Chicago, Northwestern Transportation Center, https://www.transportation.northwestern.edu/docs/2020/20200501-report-taxiscovid19chicago.pdf (last date accessed: 13 October 2021).
  2. Anselin, L. (1995), Local indicators of spatial association-LISA, Geographical analysis, Vol. 27, No. 2, pp. 93-115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
  3. Berleant, D. and Zhang, J. (2004), Using Pearson correlation to improve envelopes around the distributions of functions, Reliable Computing, Vol. 10, No. 2, pp. 139-161. https://doi.org/10.1023/b:reom.0000015850.27690.3b
  4. Chakraborty, I. and Maity, P. (2020), COVID-19 outbreak: Migration, effects on society, global environment and prevention, Science of the Total Environment, Vol. 728, p. 138882. https://doi.org/10.1016/j.scitotenv.2020.138882
  5. Choi, H. W., Park, J. M., Kim, H. W., and Kim, Y. O. (2007), Identifying Spatial Distribution Pattern of Water Quality in Masan Bay Using Spatial Autocorrelation Index and Pearson's r, Ocean and Polar Research, Vol. 29, No. 4, pp. 391-400. (in Korean with English abstract) https://doi.org/10.4217/OPR.2007.29.4.391
  6. Daegu Metropolitan City (2021a), Current status of COVID-19, the number of confirmed cases, Daegu Metropolitan City, http://covid19.daegu.go.kr/00937420.html (last date accessed: 12 October 2021).
  7. Daegu Metropolitan City (2021b), Resident registration population and household status, Daegu Metropolitan City, http://stat.daegu.go.kr/basicStats/moisPrsnInfo.do (last date accessed: 22 December 2021).
  8. Daegu Metropolitan City (2021c), Status of medical institutions, Daegu Metropolitan City, https://www.daegu.go.kr/health/index.do?menu_id=00001038 (last date accessed: 22 December 2021).
  9. Endarnoto, S. K., Pradipta, S., Nugroho, A. S., and Purnama, J. (2011), Traffic condition information extraction & visualization from social media twitter for android mobile application, In Proceedings of the 2011 International Conference on Electrical Engineering and Informatics, IEEE, 17-19 July, Bandung, Indonesia, pp. 1-4.
  10. Jeon, S. B., Jeong, M. H., Lee, T. Y., Lee, J. H., and Cho, J. M. (2020), Bus Travel Speed Prediction Using Long Short-term Memory Neural Network, Sens. Mater, Vol. 32, pp. 4441-4447.
  11. Jeon, S. B., Khan, M. S., Lee, J. H., and Jeong, M. H. (2021), Road Network Traffic Data Prediction Using ResNet, Korea Spatial Information Society, Vol. 29, No. 2, pp. 75-84. (in Korean with English abstract)
  12. Jeong, M. H., Lee, T. Y., Jeon, S. B., and Youm, M. (2021), Highway Speed Prediction Using Gated Recurrent Unit Neural Networks, Applied Sciences, Vol. 11, No. 7, p. 3059. https://doi.org/10.3390/app11073059
  13. Kim, J. H., Kim, H. J., and Kim, G. W. (2020), The spread of COVID-19 and changes in urban transportation demand -Focused on the case of Daegu Metropolitan City in the first half of 2020-, KRIHS issue report 21, Korea Research Institute for Human Settlements, Sejong, pp. 1-8.
  14. Kim, J. M., Ki, D. H., and Lee, S. G. (2021), Analysis of Travel Mode Choice Change by the Spread of COVID-19: The Case of Seoul, Korea, Journal of Korea Planning Association, Vol. 56, No. 3, p. 113. (in Korean with English abstract)
  15. Korea National Joint Conference of taxi Association, (2021), Number of taxis and driver status, http://www.taxi.or.kr/04/01_view.php?no=186 (last date accessed: 12 October 2021).
  16. Lee, K. S., Park, S. Y., and Ham, Y. H. (2021), Changes in Subway Traffic in Seoul during Social Distancing due to the Spread of COVID-19 and Geographic Characteristics of the Area Behind the Station, The Economic Geographical Society of Korea, Vol. 24, No. 2, pp. 127-142. (in Korean with English abstract)
  17. Liu, L., Miller, H. J., and Scheff, J. (2020), The impacts of COVID-19 pandemic on public transit demand in the United States, Plos one, Vol. 15, No. 11, p. e0242476. https://doi.org/10.1371/journal.pone.0242476
  18. Manley, E., Ross, S., and Zhuang, M. (2021), Changing Demand for New York Yellow Cabs during the COVID-19 Pandemic, Findings, p. 22158.
  19. Miao, C., Liu, H., Zhu, G. G., and Chen, H. (2018), Connectivity-based optimization of vehicle route and speed for improved fuel economy. Transportation Research Part C: Emerging Technologies, Vol. 91, pp. 353-368. https://doi.org/10.1016/j.trc.2018.04.014
  20. Ministry of Land, Infrastructure and Transport (2019), Ministry of Land, Infrastructure and Transport Standard Node Link, Open data portal, https://www.data.go.kr/data/15025526/fileData.do (last date accessed: 12 October 2021).
  21. National Spatial Data Infrastructure Portal (2016a), Daegu Metropolitan City land use map, Ministry of Land, Infrastructure and Transport, http://data.nsdi.go.kr/dataset/20190801ds00001/resource/8fddf45d-26cb-4530-b400-fff47647ca07 (last date accessed: 12 October 2021).
  22. National Spatial Data Infrastructure Portal (2016b), Administrative district Si-Gun-Gu boundary, Ministry of Land, Infrastructure and Transport, http://data.nsdi.go.kr/dataset/20190801ds00001/resource/8fddf45d-26cb4530-b400-fff47647ca07 (last date accessed: 22 December 2021).
  23. Nian, G., Peng, B., Sun, D.J., Ma, W., Peng, B., and Huang, T. (2020), Impact of COVID-19 on urban mobility during post-epidemic period in megacities: from the perspectives of taxi travel and social vitality, Sustainability, Vol. 12, No. 19, p. 7954. https://doi.org/10.3390/su12197954
  24. Orro, A., Novales, M., Monteagudo, A., Perez-Lopez, J. B., and Bugarin, M. R. (2020), Impact on city bus transit services of the COVID-19 lockdown and return to the new normal: the case of A Coruna (Spain), Sustainability, Vol. 12, No. 17, p. 7206. https://doi.org/10.3390/su12177206
  25. Park, J. (2020), Changes in subway ridership in response to COVID-19 in Seoul, South Korea: Implications for social distancing, Cureus, Vol. 12, No. 4.
  26. Schrank, D., Lomax, T., and Eisele, B. (2021), 2021 Urban Mobility Report, Texas A&M Transportation Institute, Texas, https://static.tti.tamu.edu/tti.tamu.edu/documents/mobility-report-2021.pdf, (last date accessed: 13 October 2021).
  27. Seoul Metropolitan Government (2021), Major Traffic Statistics, Seoul Metropolitan Government, Seoul, https://news.seoul.go.kr/traffic/archives/307 (last date accessed: 12 October 2021).
  28. Shin, H. Y., Park, S. Y. Kang, S. H., and Lee, K. S. (2021), Associations of COVID-19 and Local Economy Analyzed with Structured and Unstructured Data: A Case Study of Seongdong-gu, Seoul, The Korean Geographical Society, Vol. 56, No. 4, pp. 421-435. (in Korean with English abstract)
  29. Sung, H. G. and Kwak, M. S. (2016), Mediation Impacts of Physical Urban Form on Rail Transit Ridership by the Infection Fear of the Middle East Respiratory Syndrome : Focused on the Rail Station Area in Seoul, Korea, Journal of Korea Planning Association, Vol. 51, No. 7, pp.165-180. (in Korean with English abstract) https://doi.org/10.17208/jkpa.2016.12.51.7.165
  30. Wang, H. and Noland, R. B. (2021), Bikeshare and subway ridership changes during the COVID-19 pandemic in New York City, Transport policy, Vol. 106, pp. 262-270. https://doi.org/10.1016/j.tranpol.2021.04.004
  31. Wilbur, M., Ayman, A., Ouyang, A., Poon, V., Kabir, R., Vadali, A., Pugliese, P., Freudberg, D., Laszka, A., and Dubey, A. (2020), Impact of COVID-19 on public transit accessibility and ridership, arXiv preprint arXiv:2008.02413.
  32. Zhu, R., Anselin, L., Batty, M., Kwan, M.P., Chen, M., Luo, W., Cheng, T., Lim, C.K., Santi, P., Cheng, C., and Gu, Q. (2021), The effects of different travel modes and travel destinations on COVID-19 transmission in global cities, Science bulletin.