DOI QR코드

DOI QR Code

The Determination of Anaerobic Biodegradability and Organic Fractionation of Agricultural Byproducts by Biochemical Methane Potential Assay Using Double First-Order Kinetic Model

반응속도 모델을 적용한 농업부산물의 혐기성 유기물분해율과 메탄생산잠재량 분석

  • 신국식 (국립한경대학교 바이오가스연구센터) ;
  • 윤영만 (국립한경대학교 바이오가스연구센터)
  • Received : 2021.11.01
  • Accepted : 2021.12.14
  • Published : 2021.12.30

Abstract

This study investigated methane productions and a degradation rate of organic matters by German standard method, VDI4630 test. In this study, 11 waste biomasses from agricultural fields were selected for the investigation. The objective of this study was to estimate a distribution of organic matters by using the Double first-order kinetics model in order to calculate the rate of biodegradable organic matters which degrade rapidly in the initial stage and the persistently biodegradable organic matters which degrade slowly later. As a result, all the biomasses applied in this study showed rapid decomposition in the initial stage. Then the decomposition rate began to slow down for a certain period and the rate became 10 times slower than the initial decomposition rate. This trend of decomposition rate changes is typical conditions of biomass decompositions. The easily degradable factors (k1) were raged between 0.097~0.152 day-1 from vegetable crops and persistent degradable factor (k2) were 0.002~0.024 day-1. Among these results, greater organic matter decomposition rates from VDI4630 had greater k1 values (0.152, 0.144day-1) and smaller k1 values (0.002, 0.005day-1) from cucumbers and paprika. In a meanwhile, radishes and tangerine rinds which had low decomposition rates showed 0.097 and 0.094 day-1 of k1 values and decomposition rates seems to affect k1 values.

본 연구는 독일 유기물분해율 표준시험법인 VDI4630 시험을 통해 메탄 생성 및 유기물의 분해율을 조사하였으며 시험을 위해 농업 분야의 11개의 폐기물 바이오매스를 공시재료로 선택하여 시험하였다. 본 연구의 목적은 초기에 빠르게 분해되는 생분해성 유기물과 이후 천천히 지속적으로 분해되는 유기물의 비율을 계산하기 위해 Double first-order kinetics 모델을 이용하여 유기물의 분포를 추정하고자 하였다. 그 결과로 본 연구에 적용된 모든 바이오매스는 초기 단계에서 빠른 분해를 보이다가 이후 분해 속도가 일정 시간 느려지기 시작하여 초기 분해 속도보다 10배 이상 느려지는 결과를 보였다. 이러한 분해율 변화 경향은 바이오매스 분해의 전형적인 형태이며 쉽게 분해되는 인자(k1)는 채소 작물에서 0.097~0.152 day-1 범위였고, 분해에 저항성을 가지는 인자(k2)는 0.002~0.024 day-1 사이에 위치하였다. 유기물 분해율이 높을수록 k1 상수 값이 더 크게 나타났으나 (0.152, 0.144day-1) 오이와 파프리카 열매와 같이 표면에 왁스층이 존재하는 부산물은 k1 값이 오히려 줄기보다 낮았고 (0.002, 0.005day-1), 무와 귤껍질도 k1 각각 0.097과 0.094 day-1로 낮은 분해율과 k1 값을 보여 유기물의 분해율은 이분해성 유기물 분해 상수인 k1 값에 크게 영향을 미치는 것으로 분석되었다.

Keywords

Acknowledgement

This research was supported by Advanced Production Technology Development Program, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea (Project No. 321091-3).

References

  1. Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwt, A. J., Kalyuzhnyi, S., Jenicek, P. and vanLier, J. B. "Defining the biomethane potential(BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays", Water Sci. Technol., 59(5), pp. 927~934. (2009). https://doi.org/10.2166/wst.2009.040
  2. APHA. Standard methods for the examination of water and wastewater, 20th ed., American water works association, pp. 511~532. (1998).
  3. ASTM. "E2170-01 Standard test method for determining the anaerobic biodegradation potential of organic chemicals. American Society for Testing and Materials", West Conshohocken, PA. (2008).
  4. Beuvink, J. M., Spoelstra, S. F. and Hogendrop, R. J. "An automated method for measuring the time course of gas production of feedstuffs incubated with buffered rumen fluid. Neth", J. Agri. Sci., 40, pp. 401~407. (1992).
  5. Kang, H., Shin, K. S. and Richards, B. "Determination of ultimate biodegradability and multiple decay rate coefficients in anaerobic batch degradation of organic wastes", Environmental Eng. Res., 27(5), pp. 555~601. (2005).
  6. Kang, H. and Tritt, W. P. "Ultimate biodegradability and decay rates of cow paunch manure under anaerobic conditions. Bioresource Technology", 36, pp. 161~165. (1991). https://doi.org/10.1016/0960-8524(91)90174-I
  7. Li, Y. Y. and Noike, T. "Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment", Water Sci. Technol., 26, pp. 857~866. (1992). https://doi.org/10.2166/wst.1992.0466
  8. Owen, W. F., Stuckey, D. C., Healy, J. B., Young, L.Y. and MaCarty, P. L. "Bioassay for monitoring biochemical methane potential and anaerobic toxicity", Water Res., 12, pp. 485~492. (1979).
  9. Raposo, F., Fernandez-Cegri, V., DelaRubia, M. A., Borja, R., Beline, F., Cavinato, C., Demirer, G., Fernandez, B., Fdz-Polanco, M., Frigon, J. C., Ganesh, R., Kaparaju, P., Koubova, J., Mendez, R., Menin, G., Peene, A., Scherer, P., Torrijos, M., Uellendahl, H., Wierinck, I. and Wilde, V. "Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study", J. Chem. Technol. Biotechnol., 86(8), pp. 1088~1098. (2011). https://doi.org/10.1002/jctb.2622
  10. Shelton, D. R. and Tiedje, J.M. "General method for determining anaerobic biodegradation potential", Appl. & Environ. Microbiol., 47, pp. 850~857. (1984). https://doi.org/10.1128/aem.47.4.850-857.1984
  11. Sorensen, A. H., Winther-Nielsen, M. and Ahring, B. K. "Kinetics of lactate, acetate and propionate in unadapted and lactate-adapted thermophilic, anaerobic sewage sludge: the influence of sludge adaptation for start-up of thermophilic UASB-reactors", Micro biol. biotechnol., 34, pp. 823~827. (1991).
  12. VDI 4630. "Fermentation of organic materials, characterisation of the substrates, sampling, collection of material data, fermentation test. VDI-Handbuch Energietechnik", (2006)
  13. Williams, A., Amat-Marco, M. and Collins, M. D. "Pylogenetic analysis of Butyrivibrio strains reveals three distinct groups of species within the Clostridium subphylm of the gram-positive bacteria", Int. J. Syst. Bacterol., 46, pp. 195~199. (1996). https://doi.org/10.1099/00207713-46-1-195