DOI QR코드

DOI QR Code

Investigation of Domestic and Foreign Forest Resource Management Status and Analysis of Laser Scanning Technology Application

국내외 산림자원관리 현황 조사 및 레이저 스캐닝 기술의 산림적용 방안 분석

  • Park, Joon-Kyu (Department of Civil Engineering, Seoil University) ;
  • Lee, Keun-Wang (Department of the Multimedia Science, Chungwoon University)
  • 박준규 (서일대학교 토목공학과) ;
  • 이근왕 (청운대학교 멀티미디어학과)
  • Received : 2021.09.13
  • Accepted : 2021.11.20
  • Published : 2021.11.28

Abstract

In this study, items for forest policy and forest resource research in Austria, Japan, New Zealand, and Indonesia, which are major forest advanced countries, were investigated, and the applicability of point cloud data acquired through laser scanning was identified. Through the study, it was found that forest policies in developed countries are being pursued for the purpose of sustainable forest conservation and management, job creation, and timber productivity improvement, and that new technologies are being researched and applied to actual projects. Korea has a high proportion of forests compared to the national land area compared to major forestry developed countries, but the accumulation of trees is relatively low, so it is a time for scientific forest management to improve the accumulation of trees. To understand the applicability of laser scanning technology, a forest resource survey using point cloud data was conducted, and the diameter of breast height, height, number of trees per unit area were calculated, and the shape of the crown was identified. If field experiments and accuracy evaluations applying various laser scanning technologies are carried out in the future, it will be possible to present the quantitative improvement of forest resource survey using foil cloud.

본 연구에서는 주요 산림 선진국인 오스트리아, 일본, 뉴질랜드, 인도네시아의 산림 정책 및 레이저 스캐닝 기술을 활용한 산림자원조사 사례를 조사하고, 레이저 스캐닝을 통해 취득되는 포인트클라우드 데이터의 산림자원조사 적용 가능성을 파악하였다. 연구를 통해 선진국의 산림정책은 지속 가능한 산림의 보전 및 관리와 일자리 창출, 목재 생산성 향상을 목적으로 추진되고 있으며, 새로운 기술 연구 및 실제 사업에서의 적용이 이루어지고 있음을 알 수 있었다. 우리나라는 주요 산림 선진국과 비교했을 때 국토면적에 비해 높은 산림 비율을 가지고 있지만 임목축적은 상대적으로 낮게 나타나 임목축적의 향상을 위한 과학적인 산림관리가 필요한 시점이라 할 수 있다. 레이저 스캐닝 기술의 적용 가능성 파악을 위해 포인트클라우드 데이터를 이용한 산림자원조사 실험을 수행하였으며, 흉고직경, 수고, 단위면적당 본수를 산출하고, 수관의 형태를 파악하였다. 향후 다양한 레이저 스캐닝 기술을 적용한 현장 실험과 정확도 평가가 이루어진다면 포일트클라우드를 이용한 산림자원조사의 정량적인 업무 개선정도를 제시할 수 있을 것이다.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT(No. NRF-2021R1F1A1061677)

References

  1. J. K. Park & D. Y. Um. (2020). Usability Evaluation of the Drone LiDAR Data for River Surveying, Journal of the Korea Academia-Industrial cooperation Society, 21(5), 592-597. DOI: https://doi.org/10.5762/KAIS.2020.21.5.592
  2. J. K. Park & K. W. Lee. (2019). Application of Terrestrial LiDAR for Displacement Detecting on Risk Slope, Journal of the Korea Academia-Industrial cooperation Society, 20(1), 323-328. DOI: https://doi.org/10.5762/KAIS.2019.20.1.323
  3. T. H. Kim & J. H. Youn. (2019). A study on 3D safety state information platform architecture design for realistic disaster management based on spatial information, Journal of the Korea Academia-Industrial cooperation Society, 20(4), 564-570. DOI: https://doi.org/10.5762/KAIS.2019.22.1.621
  4. D. H. Park, Y. G. Jamg & J. S. Ryu. (2020). A Study of the DB Design Standard for Submitting Completion Drawings for Auto-Renewal of Underground Facility Information. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 38(6), 681-688. DOI: https://doi.org/10.7848/ksgpc.2020.38.6.681
  5. J. K. Park & M. K. Oh. (2020). Application of Object Modeling and AR for Forest Field Investigation, Journal of the Korea Academia-Industrial cooperation Society, 21(12), 411-416. DOI: https://doi.org/10.5762/KAIS.2020.21.12.411
  6. A. S. Choi. (2021). Economic Valuation of Green Spaces for Residents in non-Capital Areas, Environmental and Resource Economics Review, 30(1), 1-26. DOI:: https://doi.org/10.15266/KEREA.2021.30.1.001
  7. S. H. Kim & K. J. Li. (2020). Automated Construction of IndoorGML Data Using Point Cloud, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 38(6), 611-622. DOI: https://doi.org/10.7848/ksgpc.2020.38.6.611
  8. J. K. Park & K. Y. Jung. (2020). Building Detection by Convolutional Neural Network with Infrared Image, Construction of 3D Geospatial Information for Development and Safety Management of Open-pit Mine. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 38(1), 43-48. DOI: https://doi.org/10.7848/ksgpc.2020.38.1.43
  9. Federal Ministry for Sustainability and Tourism. (2021). forest policy. https://www.bmnt.gv.at/english/
  10. Austrian Research Centre for Forest. (2021). Remote Sensing. https://www.bfw.gv.at/
  11. Forestry Agency. (2021). Policies. https://www.rinya.maff.go.jp/
  12. K. T. Moe, T. Owari, N. Furuya, T. Hiroshima & J. Morimoto. (2020). Remote Sensing, 12(17), 1-19. DOI: https://doi.org/10.3390/rs12172865
  13. Ministry for Primary Industries. (2021). Forestry. https://www.mpi.govt.nz/forestry/
  14. J. Zorner, J. R. Dymond, J. D. Shepherd, S. K. Wiser & B. Jolly. (2018). Forests, 9(11), 1-16. DOI: https://doi.org/10.3390/f9110702
  15. Ministry of Environment and Forestry Republic of Indonesia. (2021). The state of indonesia's forest. http://www.menlhk.go.id/
  16. Earth Data NASA. (2021). CMS_LiDAR_Indonesia. https://earthdata.nasa.gov/
  17. Korea Forest Service. (2021). Status of forestry. https://www.forest.go.kr/